Analgesic Efficacy of the Intra-articular Administration of S(+)- Ketamine in Patients Undergoing Total Knee Arthroplasty

Hireno Guará Sobrinho 1, João Batista Santos Garcia, TSA 2, Jose Wanderley Vasconcelos 3, José Carlos Amaral Sousa 4, Letácio Santos Garcia Ferro 5

Background and objectives: Total knee arthroplasty (TKA) is associated with significant postoperative pain. Many intra-articular (IA) agents have been used for postoperative analgesia with inconsistent outcomes. Ketamine’s enantiomer S(+), S(+)-ketamine, was recently introduced commercially, with higher analgesic potency and less side effects than the racemic form. An experimental prospective randomized double-blind study was conducted to evaluate the analgesic efficacy of intra-articular S(+) ketamine in patients undergoing primary TKA.

Method: In total, 56 patients were evaluated and allocated into three groups: Group A (n = 19) received 0.25 mg.kg⁻¹ of S(+) ketamine diluted in 20 mL of saline solution 0.9%; Group B (n = 17) received 0.5 mg.kg⁻¹ of S(+) ketamine diluted in the same way; and Group C (n = 20) received only 20 mL of intra-articular saline 0.9%, immediately after surgery and drain placement. All patients had access to rescue analgesic therapy, with the use of intravenous morphine alone. Evaluations were made 2, 6, 12, and 24 hours postoperatively, with measurement of pain intensity by Visual Analogue Scale (VAS), use of rescue medication by the evaluation of the time elapsed between the intra-articular injection of the solution and first dose of rescue, total consumption within 24 hours, and adverse effects.

Results: The S(+) ketamine groups had lower pain scores compared with the saline group. The lowest dose of intra-articular S(+) ketamine (Group A: 0.25 mg.kg⁻¹) resulted in better pain scores and less rescue analgesia, with longer time to first request. Adverse effects were infrequent. The results with lower pain scores in groups using S(+) ketamine are a trend, as there was no statistical significance between groups.

Conclusion: In this study, with this sample, the analgesic effect of IA S(+) ketamine was not superior to saline solution in the postoperative period of TKA.

Keywords: Analgesia; Injections, Intra-articular; Ketamine; Isomerism; Arthroplasty, Replacement, Knee.
of ketamine, isomer S(+) ketamine, was recently released, which has similar properties to the racemic form, greater analgesic potency, and fewer side effects, arousing a renewed interest in this drug.

S(+) ketamine proved to be four times more potent than R(-) ketamine and produced adequate anesthesia in 95% of cases. The emergency reactions, such as delusions or hallucinations, decreased from 37% with R(-) ketamine to 5% with S(+) ketamine. It is a good choice for postoperative analgesia, with adequate power, safety of non-respiratory depression, neuroprotection (cerebral vasodilation), and cardiac protection.

Borner et al. used IA S(+) ketamine in postoperative (PO) knee arthroscopy and concluded that there was a reduction on the level of subjective pain and opioid consumption compared with the application of IA bupivacaine and saline.

In a meta-analysis of 53 articles on ketamine, the authors found only four studies of S(+) ketamine, none with administration by the intra-articular route. The lack of published articles assessing the use of intra-articular S(+) ketamine in PO of TKA leads us to consider this route as an option requiring a systematic and well-controlled study.

The aim of this study was to evaluate the analgesic efficacy of intra-articular S(+) ketamine in patients undergoing primary total knee arthroplasty.

METHOD

Experimental prospective randomized double-blind study conducted at the Department of Orthopedics of the HU-UFMA, from March 2009 to December 2010. We included 60 patients referred for total knee arthroplasty, unilateral, with a diagnosis of primary osteoarthritis. It was found that samples with a minimum of 17 patients per group are needed in order to obtain an 80% chance of detecting a difference of 1 cm on a visual analgesic scale with a 5% confidence level.

Exclusion criteria were patients who refused to participate, classified as ASA IV or V by the American Society of Anesthesiologists, with psychiatric illness, drug addicts, with cardiovascular, respiratory, metabolic or neurological diseases, uncompensated, and with recognized allergy to anesthetics. We also excluded patients who used postoperative analgesics other than the one recommended as rescue and those who were discharged before the first 24 hours postoperatively.

All procedures were performed under spinal anesthesia, which was administered by a staff anesthesiologist of the Hospital Universitário Presidente Dutra, with application of 15 mg of isobaric bupivacaine 0.5% without associated opioids. The use of benzodiazepines for patient sedation was allowed at the discretion of the anesthesiologist.

Limb preparation consisted of placing a pneumatic cuff at the root of the thigh, and the joint approach was performed through midline incision, with luxation and lateral rotation of the patella. Prosthesis model Insall III (Meta-Bio® and Baum- er®) was used, cemented, without inclusion of patellar prosthesis.

After the procedure, local hemostasis was performed, with placement of suction drain through a different opening wound, followed by synthesis of the plans of the wound. Before complete closure of the skin, patients underwent intra-articular injection of the solution determined for each case. In all patients, we waited 15 minutes before opening the drain.

Patients were assigned in groups A, B or C through a random selection of sealed envelopes, without the participation of the investigator, patient, or surgeon. The solution was prepared according to the group distribution and taken to the operating room identified only by the case number. Group A (n = 19) received 0.25 mg.kg\(^{-1}\) of S(+) ketamine diluted in 20 mL of saline solution 0.9%; Group B (n = 17) received 0.5 mg.kg\(^{-1}\) of S(+) ketamine diluted in the same way; and Group C (n = 20) received only 20 mL of intra-articular saline 0.9%, immediately after the procedure and drain placement.

All patients had access to rescue analgesia. Morphine alone was used at a dose of 5 mg IV, at the request of the patient, with a minimum of four hours between doses. In case of moderate to severe pain in less than four hours or persistence of pain, an additional dose of 5 mg could be used, with annotation in protocol form, which consisted of patient's identification and pain control and adverse events evaluation.

Patient's identification data were collected on age, sex, weight, height and time of operation.

Regarding pain control evaluation, systematic assessments were made at times 1, 2 hours PO; t\(_1\) - 6 hours PO; t\(_2\) - 12 hours PO, and t\(_3\) - 24 hours PO. Measurement of local pain intensity at rest was performed using Visual Analogue Scale (VAS), previously instructed to patients. This scale consists of a 10 cm line in which one end (0 cm) indicates no pain and the other end (10 cm) indicates the worst possible pain.

The use of rescue medication was also assessed by the time (Tr) elapsed between the intra-articular injection of the solution and the first rescue dose and its total consumption within 24 hours, quantifying the number of doses taken.

Patients were asked about the emergence of adverse effects through a questionnaire assessing dizziness, nausea, vomiting, itching and/or hives, restlessness, disorientation, depression, drowsiness, delirium, hallucinations, amnesia, and some other effects, voluntarily reported.

Results were tabulated in an electronic database program and exported to Stata 9.0™ for statistical analysis. To detect whether variables were normally distributed Shapiro-Wilk test was used followed by parametric tests for variables following a normal distribution and nonparametric for the others.

Anthropometric data were compared by ANOVA. Kruskal-Wallis test was used for weight and age variables and chi-square test for gender and adverse effects. A significance level of 5% in all tests was adopted. The study protocol was approved (Nº 293/2008) by the Research Ethics Committee of the Hospital Universitário da Universidade Federal do Maranhão (HU-UFMA), and all patients signed the informed consent before the first evaluation.
RESULTS

Among the 60 patients, one was lost in Group A and three in Group B due to the intravenous administration of non-recommended analgesic and morphine during spinal anesthesia. Therefore, we assessed a sample of 56 patients, Group A (n = 19), Group B (n = 17), and Group C (n = 20). The mean duration of surgery was 128 minutes, with no statistically significant difference between groups for the studied variables sex, age, weight, and height (Table I).

Table II shows the mean value of pain intensity at different times “t” for each group analyzed. There was no statistically significant difference among S(+)- ketamine groups (A and B) and saline group (C).

Regarding the comparison of rescue medication, Group A had a lower consumption than Groups B and C, but with no statistical significance (p = 0.52). The average consumption over 24 hours was 2.47 morphine doses for Group A, 2.82 for Group B, and 2.9 for Group C. Graphic 1 shows the total consumption for each group throughout the study.

The time to the first dose of rescue analgesic was longer in Group A than in Groups B and C. There was a mean of 177.4 minutes for Group A, 157.9 for Group B, and 145.1 for Group C, with no statistical significance (p = 0.35). Graphic 2 represents the medians, the minimum and maximum values for the time in minutes in which patients requested morphine rescue.

Table I – Anthropometric Data of Evaluated Patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group A (n = 19)</th>
<th>Group B (n = 17)</th>
<th>Group C (n = 20)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (%)</td>
<td>M 15.79</td>
<td>5.88</td>
<td>30</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>F 84.21</td>
<td>94.12</td>
<td>70</td>
<td>0.65</td>
</tr>
<tr>
<td>Age (years)**</td>
<td>67.05 ± 7.04</td>
<td>64.12 ± 8.90</td>
<td>66.65 ± 8.27</td>
<td>0.72</td>
</tr>
<tr>
<td>Weight (kg)**</td>
<td>66.85 ± 12.99</td>
<td>65.26 ± 10.47</td>
<td>67.87 ± 13.91</td>
<td>0.88</td>
</tr>
<tr>
<td>Height (cm)**</td>
<td>151.42 ± 9.96</td>
<td>151.71 ± 6.11</td>
<td>150.95 ± 8.80</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table II – Mean Values ± Standard Deviation of Pain Intensity for Each Interval Measured by VAS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group A (n = 19)</th>
<th>Group B (n = 17)</th>
<th>Group C (n = 20)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>(4.6 ± 3.8)</td>
<td>(6.4 ± 3.0)</td>
<td>(6.7 ± 3.0)</td>
<td>0.23</td>
</tr>
<tr>
<td>t2</td>
<td>(4.8 ± 2.9)</td>
<td>(5.8 ± 3.1)</td>
<td>(5.5 ± 3.1)</td>
<td>0.68</td>
</tr>
<tr>
<td>t3</td>
<td>(5.1 ± 2.8)</td>
<td>(5.2 ± 3.0)</td>
<td>(5.0 ± 2.8)</td>
<td>0.79</td>
</tr>
<tr>
<td>t4</td>
<td>(3.1 ± 2.4)</td>
<td>(3.1 ± 2.3)</td>
<td>(3.2 ± 2.8)</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard deviation. Statistical significance at p < 0.05. Kruskal-Wallis test.

Some adverse effects were observed, with nausea, dizziness, and somnolence being the most prevalent, but with no statistical difference between groups, as shown in Table III.

Table III – Number of Patients (n) and Percentage (%) of Adverse Effects Found in Studied Groups

<table>
<thead>
<tr>
<th>Collateral effects</th>
<th>Group A (n = 19)</th>
<th>Group B (n = 17)</th>
<th>Group C (n = 20)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>8 42.11</td>
<td>6 35.29</td>
<td>7 35.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3 15.79</td>
<td>5 29.41</td>
<td>1 5.00</td>
<td>0.34</td>
</tr>
<tr>
<td>Drowsiness</td>
<td>1 5.26</td>
<td>4 23.53</td>
<td>4 20.00</td>
<td>0.57</td>
</tr>
<tr>
<td>Hallucination</td>
<td>1 5.26</td>
<td>0 0</td>
<td>1 5.00</td>
<td>0.65</td>
</tr>
<tr>
<td>Nightmares</td>
<td>1 5.26</td>
<td>0 0</td>
<td>0 0</td>
<td>0.32</td>
</tr>
<tr>
<td>Delirium</td>
<td>2 10.53</td>
<td>0 0</td>
<td>0 0</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Chi-square test. Statistical significance at p < 0.05.

Graphic 1 – Median and Quartiles of the Number of Doses of Morphine in the period of 24 h.

Graphic 2 – Median and Quartiles Regarding Time (minutes) of Rescue analgesic in Studied Groups.
DISCUSSION

Many studies of IA medication use are for arthroscopic knee surgery, a procedure less painful than TKA, which used bupivacaine 16, morphine 17, clonidine 18, and magnesium 19 with satisfactory results. Ketamine is rarely used, but it has been reported as an analgesic able to produce effect in peripheral pain control 9,20-22.

The choice of S(+)-ketamine was based on analysis of studies demonstrating that this drug is an anesthetic and analgesic agent with fast onset of action, with non-competitive blocking action on the N-methyl-D-aspartate (NMDA) receptor, placing it at an unique level in combating the painful process 9,23,24. Due to the adverse effects following systemic administration, local application of NMDA antagonists has become a promising option. Subsequent studies have used intra-articular, topical or local injections of ketamine to minimize these effects, reduce pain and consumption of opioids in the postoperative period 25-28.

Similar to other studies, there was no difference between groups for age, sex, weight, height, and duration of surgery, which provides a sample with uniform demographic data 8,9,11,17,24,25,27-34.

The assessment of S(+)-ketamine analgesic efficacy was divided into direct and indirect; the first was based on comparative analysis of pain scores obtained from VAS at time (t) between groups; in the second, we evaluated the comparison between groups with respect to time (Tt) for the first request of rescue analgesia and its total consumption.

Rosseland et al. 25, Borner et al. 11, and García et al. 35 have used this type of analysis in their work, which follows the general trend of most studies on this topic. We believe this is the best way to evaluate the efficacy of therapy, because, whereas the effect of intervention with rescue analgesics tends to homogenize VAS scores, the analysis of indirect data allows characterizing the effectiveness of IA S(+)-ketamine with more reliability.

Patients were evaluated postoperatively at t1 (2h), T2 (6h), T3 (12h), and T4 (24h) based on earlier publications and assessment division of post-operative pain in three phases: early (0-2h) in which the residual effect of anesthesia/analgesia administered intraoperatively could lead to a bias in the study; intermediate (2-6h) in which the effect of these drugs usually start to decrease, and late (6-24h) in which the present analgesic effect would be predominantly local 36-38.

In order to reduce the influence of the anesthetic procedure in the evaluation of t1, we chose to administer spinal anesthesia without the addition of opioids and with no use of local anesthesia. There was no association of analgesic drugs at any time of the procedure or postoperatively.

In direct evaluation, we found lower pain scores on VAS in Group A at t1 and t2 compared with other groups, but with no statistical significance. In Groups B and C, the assessment of pain scores from t1 to t4 showed a decreasing trend in the intensity of pain over time. There was no statistically significant difference between groups, although S(+)-ketamine groups (A and B) had lower pain scores.

Intra-articular morphine at high doses (10 mg) was tested on postoperative TKA, with lower pain scores, consumption, and time of rescue analgesia compared to placebo 35. Fu et al. 7, used morphine 5 mg, bupivacaine 15 mg, and betamethasone 1 mL intra-articularly in postoperative TKA and found lower pain scores. Carvalho Junior et al. 39 showed that intra-articular and peri-incisional administration of bupivacaine, morphine, and epinephrine were ineffective in reducing post-operative pain in TKA. Ritter et al. 33 also used intra-articular morphine and bupivacaine on postoperative TKA and found no improvement in analgesia.

Dal et al. 9 used IA racemic ketamine at a dose of 0.5 mg.kg⁻¹ and promoted prolonged and effective analgesia with few adverse effects, with similar results to those of neostigmine but no better than bupivacaine. Rosseland et al. 25 studied 77 patients after the use of racemic ketamine 10 mg IA and 10 mg intramuscular compared with saline solution 10 mL IA in knee arthroscopy and there was no difference between the group receiving racemic ketamine and saline, both through IA route.

We found no studies of IA S(+) ketamine in postoperative TKA. There is a study by Borner et al. 11 in which IA S(+) ketamine was used, but in postoperative knee arthroscopy, and the authors concluded that the dose 0.25 mg.kg⁻¹ decreased pain intensity and opioid consumption if compared with the administration of IA bupivacaine and saline. In our study, the dose of 0.25 mg.kg⁻¹ showed a trend in reducing pain scores and opioid consumption, similar to Borner et al. 11, but there was no difference, both in statistics or in the procedure that generates more nociceptive stimuli.

Another way to test S(+) ketamine would be through continuous intra-articular injection by a catheter in the postoperative period, at various doses, and not only one application immediately after the procedure. Bupivacaine was tested intra-articularly before and after knee arthroscopy, with better results in controlling pain when administered before surgery, suggesting a preemptive effect 40. Because ketamine has been reported as effective in controlling postoperative hyperalgesia, it could also be used before the procedure to evaluate a possible preemptive action, as well as pain could be evaluated weeks after surgery to test its effect on chronic pain after surgery.

The rescue analgesic could be administered by infusion pump and controlled by the patient to prevent administration or request delay. This may be a relevant observation when high pain scores are found at times t1 to t3 (≥ 4) associated with low demand for rescue analgesic (< 3). One aspect to be emphasized is the culture that pain should be part of the postoperative period and that, despite the explanations given to the patient, many remain passive or stoic regarding analgesic request.

The ideal time of injected solution permanence into the knee before opening the drain tube should be better determined. Most studies using drain opens it between 10 min 17 and 15 min 35, due to a hyperkinetic blood flow there is a displacement of the drug from its peripheral receptor, which influences the quality and duration of analgesic effect. One
interesting possibility would be the non-use of suction drain, which would guarantee the permanence of the whole solution injected into the joint. A recent study showed no benefit in the use of suction drain in postoperative TKA.

The mean consumption of rescue medication within the first postoperative 24 hours was the first variable assessed in the indirect evaluation, which showed a tendency toward lower value in Group A than Groups B and C. Similar results were found by Borner et al. and Dal et al. The second variable studied was “Tr” (time to first request of analgesic dose) in which the group with the lowest dose of S(+)-ketamine had more prolonged analgesia, weighting longer to request rescue analgesia (177.4 min), with no statistical difference though. This result differs from that of Dal et al. who found a greater time to first analgesic dose in groups receiving racemic ketamine 0.5 mg.kg⁻¹, with mean of 109.3 versus 63.3 min for the group receiving 20 mL of saline in postoperative knee arthroscopy.

There was occurrence of some adverse effects during the study, but none compromised its continuation. In previous work, the onset of side effects also was not a limiting factor for IA ketamine use. The few side effects can be explained by the relatively low dose used, intra-articular poor vascularization, degree of synovectomy during surgery, or effect only locally. Studies are needed to determine the optimal dose of intra-articular S(+)-ketamine and evaluate its plasma concentration and its metabolites, in order to differentiate systemic from peripheral effect. An example is the study by Joshi et al. that assayed plasma morphine and found very low concentration, insufficient to promote postoperative analgesia, which suggests only local effect.

To explain the lack of significance in pain scores between groups, we may consider some justifications, such as the small number of patients per group, residual effect of anesthetic due to the technique used, and possible preemptive effect of subarachnoid block, which could prevent the sensitization of spinal neurons and provide postoperative analgesia. Furthermore, the optimal dose and volume of S(+)-ketamine for intra-articular use should be better determined. It is known that the commonly used doses (5 mg.kg⁻¹-intramuscularly or 1-2 mg.kg⁻¹ intravenously) are not ideal, as dysleptic phenomena often occur in patients. The benefits of S(+)-ketamine exist when it is used in small doses (0.1 to 0.25 mg.kg⁻¹) via parenteral route, due to its greater affinity for the NMDA receptors, which provides adequate analgesia and consumption reduction of analgesics postoperatively. In our study, the lowest dose of S(+)-ketamine (Group A: 0.25 mg.kg⁻¹) showed the best trend toward reducing pain scores and also demonstrated the possibility of ketamine better effects at lower doses via intra-articular route.

In this study, the groups using S(+)-ketamine showed a tendency toward lower scores for pain in postoperative total knee arthroplasty, without significant superiority compared to saline.
Eficácia Analgésica do Uso da Dextrocetamina Intra-articular em Pacientes Submetidos a Artroplastia Total do Joelho

Hireno Guará Sobrinho 1, João Batista Santos Garcia, TSA 2, José Wanderley Vasconcelos 3, José Carlos Amaral Sousa 4, Letácio Santos Garcia Ferro 5

Justificativa e objetivos: A artroplastia total do joelho (ATJ) é associada a significativa dor pós-operatória. Muitos agentes de uso intra-articular (IA) têm sido empregados para analgesia pós-operatória com resultados inconsistentes. O enantiômetro cetamina S(+), a dextrocetamina, foi recentemente lançado comercialmente, com maior potência analgésica e menos efeitos indesejáveis do que a forma racêmica. Estudo prospectivo, experimental, aleatório e duplamente encoberto foi conduzido com o objetivo de avaliar a eficácia analgésica do uso da dextrocetamina por via intra-articular em pacientes submetidos à ATJ primária.

Método: Foram avaliados 56 pacientes, alocados em três grupos: Grupo A (n = 19), que recebeu 0,25 mg.kg⁻¹ de peso de dextrocetamina, diluído em 20 mL de solução fisiológica a 0,9%; Grupo B (n = 17), 0,5 mg.kg⁻¹ de peso diluído da mesma forma; e Grupo C (n = 20), somente 20 mL de solução fisiológica a 0,9%, intra-articular, logo após o fim do procedimento e a colocação do dreno. Todos os pacientes tiveram acesso à terapia analgésica de resgate, sendo usada somente morfina endovenosa. Foram feitas avaliações 2, 6, 12 e 24 horas de pós-operatório, com mensuração da intensidade da dor pela Escala Analógica Visual (EAV), o uso da medicação de resgate pela avaliação do tempo decorrido entre a injeção intra-articular da solução e a primeira dose de resgate, o seu consumo total nas 24 horas e os efeitos adversos.

Resultados: Os grupos dextrocetamina obtiveram menores escores de dor quando comparados com a solução salina. A menor dose de dextrocetamina intra-articular (Grupo A: 0,25 mg.kg⁻¹) usada resultou em melhores escores de dor e menos analgésico de resgate, com tempo de espera maior para sua solicitação. Os efeitos adversos foram infrequentes. Os resultados com menores escores de dor nos grupos que usaram a dextrocetamina são uma tendência, pois não houve significância estatística entre os grupos.

Conclusão: Neste estudo, com essa amostra, o efeito analgésico da dextrocetamina IA não foi superior à solução salina no período pós-operatório da ATJ.

Unitermos: ANALGESIA, Pós-operatório, intra-articular; ANALGÉSICO, Cetamina; CIRURGIA, Ortopédica, artroplastia de joelho; FARMACOLOGIA, Isomeria.

INTRODUÇÃO

A dor intensa é a principal indicação para a artroplastia total do joelho (ATJ), que é bem-sucedida em pacientes com osteoartrite primária ou secundária avançada quando todas as opções não cirúrgicas foram empregadas sem sucesso. Mesmo imagens positivas do exame radiológico dependem de uma correlação clínica manifestada por dor para que haja indicação cirúrgica.

Diversos autores apontam o pós-operatório (PO) desse tipo de procedimento como intensamente doloroso e associado a uma grande demanda de analgésicos. O uso de medicações sistêmicas, bloqueios centrais ou periféricos e analgésicos intra-articulares no controle da dor no pós-operatório tem limitações relacionadas a equipamentos e monitoração especiais, além de efeitos adversos importantes. Desse modo, promover analgesia somente no local do trauma cirúrgico, com mínimos efeitos sistêmicos, é uma opção atrativa.

Muitos agentes de uso intra-articular (IA), como a morfina e bupivacaína, têm sido usados para anestesia local e analgesia pós-operatória no tratamento e na prevenção de dor após operações de joelho. A cetamina tem sido pouco usada pela via IA. Porém, estudos sugerem que esse fármaco pode ser útil como analgésico adjuvante por essa via.

A cetamina foi introduzida na prática clínica há cerca de 40 anos, com o objetivo de atuar como substância monoanestésica com propriedades de analgesia, amnésia, inconsciência...
e imobilidade. Devido a importantes efeitos adversos, não conseguiu ampla aceitação clínica. Recentemente foi lançada comercialmente a dextrocetamina, isômero S(+) da cetamina, que apresenta propriedades semelhantes à forma racêmica, com maior potência analgésica e menos efeitos indesejáveis, o que despertou novamente o interesse por esse fármaco 12.

A dextrocetamina se mostrou quatro vezes mais potente do que a R(-) cetamina e produziu anestesia adequada em 95% dos casos. As reações de emergência, tais como delírio ou alucinação, caíram de 37% com a R(-) cetamina para 5% com a dextrocetamina. É boa opção para analgesia pós-operatória, com potência adequada, segurança da não depressão respiratória, neuroproteção (vasodilatação cerebral) e proteção cardíaca 13.

Borner e col. 11 usaram a dextrocetamina IA em PO de artroscopia do joelho e concluíram que houve redução do nível de dor subjetiva e do consumo de opioides quando comparada com a aplicação IA de bupivacaína e solução salina.

Em uma metanálise com 53 artigos sobre cetamina, os autores encontraram apenas quatro estudos sobre a dextrocetamina, nenhun por via intra-articular 14. A ausência de artigos publicados que avaliaram o uso da dextrocetamina intra-articular em PO de ATJ nos leva a considerar essa via como uma opção que deve ser estudada de forma sistemática e bem controlada.

O objetivo deste estudo foi avaliar a eficácia analgésica do uso da dextrocetamina via intra-articular em pacientes submetidos à artroplastia total primária do joelho.

MÉTODO

Fez-se um estudo do tipo experimental, prospectivo, aleatório e duplamente encoberto no Serviço de Ortopedia do HU-UFMA, de março de 2009 a dezembro de 2010. Foram incluídos 60 pacientes indicados para artroplastia total do joelho, unilateral, com diagnóstico de osteoartrite primária. Foi determinado que amostras com o mínimo de 17 pacientes por grupo são necessárias para que se obtenham 80% de chance de detectar a diferença de 1 cm na escala visual analgésica com nível de confiança de 5% 6.

Não foram incluídos no estudo pacientes que se recusaram a participar, os classificados como estado físico ASA IV ou V pela Sociedade Americana de Anestesiologistas, com doença psiquiátrica, dependentes químicos de drogas, com doença cardiovascular, respiratória, metabólica ou neurológica, descompensados e com alergia a anestésicos reconhecida. Os pacientes que usaram outros tipos de analgésicos no pós-operatório que não o preconizado como de resgate e os que receberam alta hospitalar antes das primeiras 24 horas de PO foram excluídos.

Todos os procedimentos foram feitos sob raquianestesia, conduzida por anestesista membro da equipe do Hospital Universitário Presidente Dutra, sendo aplicados 15 mg de bupivacaína isóbárica a 0,5%, sem opioide associado. Foi permitido o uso de benzodiazepínicos para sedação do paciente, a critério do anestesiologista.

A preparação do membro consistiu na colocação de mangueira pneumático na raiz da coxa e a abordagem da articulação foi feita através de incisão mediana, com luxação e rebaixamento lateral da patela. Foi usada prótese modelo Insall III (Meta-Bio® e Baumer®), cimentada, sem inclusão de prótese patelar.

No fim do procedimento foi feita a hemostasia local, com a colocação de dreno de sucção por meio de abertura diferente da ferida operatória, seguida de síntese dos planos da ferida. Antes do fechamento completo da pele, procedia-se à injeção intra-articular da solução determinada para o caso. Em todos os pacientes, aguardaram-se 15 minutos antes da abertura do dreno.

Os pacientes foram alocados nos grupos A, B ou C através do sorteio de envelopes fechados, sem a participação do avaliador, do paciente ou do cirurgião. A solução foi preparada de acordo com a divisão dos grupos e levada para a sala cirúrgica identificada somente pelo número do caso.

O Grupo A (n = 20) recebeu 0,25 mg.kg⁻¹ de peso de dextrocetamina, diluído em solução fisiológica a 0,9%, com volume total de 20 mL; o Grupo B (n = 20), 0,5 mg.kg⁻¹ de peso diluído da mesma forma; e o Grupo C (n = 20), somente 20 mL de solução fisiológica a 0,9%, intra-articular, logo após o fim do procedimento e a colocação do dreno.

Todos os pacientes tiveram acesso à terapia analgésica de resgate. Foi usada somente morfina, na dose de 5 mg por via endovenosa, mediante solicitação do paciente, com um período mínimo de quatro horas entre as tomadas. Em caso de dor moderada a intensa em menos de quatro horas ou persistência da mesma, uma dose adicional de 5 mg poderia ser usada, com anotação em ficha protocolo, composta pela identificação do paciente e avaliação do controle álgico e dos efeitos adversos.

Na identificação do paciente foram coletados dados referentes a faixa etária, sexo, peso, altura e tempo operatório.

Na avaliação do controle álgico, foram feitas avaliações sistemáticas, nos tempos t₁ – 2h de PO; t₂ – 6h de PO; t₃ – 12h de PO; e t₄ – 24h de PO. Fora feita a mensuração da intensidade da dor local em repouso pela Escala Analógica Visual (EAV), previamente instruída aos pacientes. Essa escala consta de um eixo de 10 cm, no qual uma extremidade (0 cm) indica ausência de dor e a outra (10 cm), a pior dor possível 15.

Foi ainda verificado o uso da medicação de resgate pela avaliação do tempo (Tr) decorrido entre a injeção intra-articular da solução e a primeira dose de resgate e o seu consumo total nas 24 horas, quantificando-se o número de doses tomadas.

Os pacientes foram interrogados sobre o aparecimento de efeitos adversos através de um questionário, no qual foram pesquisados tonturas, náuseas, vômitos, prurido e/ou urticária, agitação, desorientação, depressão, sonolência, delírio, alucinação, amnésia e algum outro voluntariamente relatado.

Os resultados foram tabulados em um programa de banco de dados eletrônicos e exportados para o Stata 9.0™, em que foi feita a análise estatística. Para detectar se as variáveis eram normalmente distribuídas, usou-se o teste Shapiro-Wilk.
seguido de testes paramétricos para as variáveis que seguiram distribuição normal e não paramétricos para as demais.

Os dados antropométricos foram comparados através do teste ANOVA. Para as variáveis peso e idade foi usado o teste Kruskal-Wallis e o teste qui-quadrado para a variável sexo e efeitos adversos. Fora adotado um nível de significância de 5% em todos os testes feitos. O protocolo de pesquisa foi aprovado (parecer 293/2008) pelo Comitê de Ética em Pesquisa do Hospital Universitário da Universidade Federal do Maranhão (HU-UFMA) e o Termo de Consentimento Livre e Esclarecido foi obtido de todos os pacientes antes da primeira avaliação.

RESULTADOS

Dos 60 pacientes, houve perda de um no Grupo A e três no grupo B, devida à administração de analgésico endovenoso não preconizado e de morfina na raquianestesia. Foi avaliada, portanto, uma amostra de 56 pacientes, 19 do Grupo A, 17 do Grupo B e 20 do Grupo C. O tempo médio de cirurgia foi de 128 minutos, sem diferença entre os grupos, e comparados quanto a sexo, idade, peso e altura, não apresentaram diferença estatisticamente significante entre nenhuma das variáveis estudadas (Tabela I).

A Tabela II exibe o valor da média da intensidade de dor nos diferentes tempos “t” para cada grupo estudado. Não houve diferença estatisticamente significante entre os grupos que receberam dextrocetamina (A e B) e o grupo que recebeu soro fisiológico (C).

Quando foi feita a comparação quanto à medicação de resgate, o Grupo A teve um consumo menor do que o Grupo B e Grupo C, porém sem significância estatística (p = 0,52). O consumo médio no período de 24 horas foi de 2,47 doses de morfina para o Grupo A, 2,82 para o Grupo B e 2,9 para o Grupo C. O Gráfico 1 mostra o consumo total para cada grupo durante todo o estudo.

O Grupo A solicitou a primeira dose de analgésico de resgate em um tempo maior do que os Grupos B e C. Observou-se uma média de 177,4 minutos para o Grupo A, 157,9 para o Grupo B e 145,1 para o Grupo C, não havendo significância estatística (p = 0,35). O Gráfico 2 representa as medianas, os valores máximos e mínimos referentes ao tempo em minutos no qual os pacientes requisitaram a morfina de resgate.

Foram observados alguns efeitos adversos, sendo náuseas, tonturas e sonolência os mais prevalentes, mas sem diferença estatística entre os grupos, conforme demonstrado na Tabela III.

Tabela I – Dados Antropométricos dos Pacientes Investigados

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Grupo A (n = 19)</th>
<th>Grupo B (n = 17)</th>
<th>Grupo C (n = 20)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo (%)</td>
<td>M 15,79</td>
<td>5,88</td>
<td>30</td>
<td>0,43</td>
</tr>
<tr>
<td>F 84,21</td>
<td>94,12</td>
<td>70</td>
<td>0,65</td>
<td></td>
</tr>
<tr>
<td>Idade (anos)**</td>
<td>67,05 ± 7,04</td>
<td>64,12 ± 8,90</td>
<td>66,65 ± 8,27</td>
<td>0,72</td>
</tr>
<tr>
<td>Peso (kg)**</td>
<td>66,85 ± 12,99</td>
<td>65,26 ± 10,47</td>
<td>67,87 ± 13,91</td>
<td>0,88</td>
</tr>
<tr>
<td>Altura (cm)**</td>
<td>151,42 ± 9,96</td>
<td>151,71 ± 6,11</td>
<td>150,95 ± 8,80</td>
<td>0,96</td>
</tr>
</tbody>
</table>

Gráfico 1 - Mediana e Quartis do Número de Doses de Morfina no Período de 24h.

Tabela II – Valores da Média ± Desvio-Padrão da Intensidade de Dor para cada Intervalo Avaliada pela EAV

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Grupo A</th>
<th>Grupo B</th>
<th>Grupo C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1 (4,6 ± 3,8)</td>
<td>(6,4 ± 3,0)</td>
<td>(6,7 ± 3,0)</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>t2 (4,8 ± 2,9)</td>
<td>(5,8 ± 3,1)</td>
<td>(5,5 ± 3,1)</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>t3 (5,1 ± 2,8)</td>
<td>(5,2 ± 3,0)</td>
<td>(5,0 ± 2,8)</td>
<td>0,79</td>
<td></td>
</tr>
<tr>
<td>t4 (3,1 ± 2,4)</td>
<td>(3,1 ± 2,3)</td>
<td>(3,2 ± 2,8)</td>
<td>0,76</td>
<td></td>
</tr>
</tbody>
</table>

Valores expressos em média ± desvio-padrão. Significância estatística quando p < 0,05. Teste de Kruskal-Wallis.

Tabela III – Número de Pacientes (n) e Percentual (%) dos Efeitos Adversos Encontrados nos Grupos Estudados

<table>
<thead>
<tr>
<th>Efeitos colaterais</th>
<th>Grupo A</th>
<th>Grupo B</th>
<th>Grupo C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náusea</td>
<td>8 42,11</td>
<td>6 35,29</td>
<td>7 35,00</td>
<td>0,54</td>
</tr>
<tr>
<td>Tontura</td>
<td>3 15,79</td>
<td>5 29,41</td>
<td>1 5,00</td>
<td>0,34</td>
</tr>
<tr>
<td>Sonolência</td>
<td>1 5,26</td>
<td>4 23,53</td>
<td>4 20,00</td>
<td>0,57</td>
</tr>
<tr>
<td>Alucinação</td>
<td>1 5,26</td>
<td>0 0</td>
<td>1 5,00</td>
<td>0,65</td>
</tr>
<tr>
<td>Pesadelos</td>
<td>1 5,26</td>
<td>0 0</td>
<td>0 0</td>
<td>0,32</td>
</tr>
<tr>
<td>Delírios</td>
<td>2 10,53</td>
<td>0 0</td>
<td>0 0</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Teste do qui-quadrado. Significância estatística se p < 0,05.
DISCUSSÃO

Muitos estudos sobre o uso de fármacos IA são de cirurgias ar-troscópicas do joelho, procedimento menos doloroso do que a ATJ, nas quais foram usados bupivacaína 16, morfina 17, cloni-dina 18, e magnésio 19 com resultados satisfatórios. A cetamina raramente é usada, porém tem sido referida como analgésico capaz de produzir efeito periférico no controle da dor 9,20-22. A escolha da dextrocetamina baseou-se na análise de estudos que demonstram que esse fármaco é agente anes-tésico e analgésico de ação rápida, com ação bloqueadora não competitiva junto aos receptores N-metil-D-aspartato (NMDA), colocando-se em patamar singular no combate ao viés no estudo; intermediária (2-6h), na qual o efeito des-sas medicações normalmente começaria a diminuir; e tardia (6-24h), na qual o efeito analgésico encontrado seria predo-minantemente local 36-38. Para diminuir a influência do procedimento anestésico na avaliação de t1, optou-se por fazer raquianestesia com bupi-vacaína sem adição de opioide e sem uso de anestesia local. Não foram associadas medicações analgésicas em nenhum momento do procedimento ou no pós-operatório. Na avaliação direta, encontramos menores escores de dor na EAV no Grupo A, no t1 e no t2, quando comparado com os demais grupos, porém sem diferença estatística significativa. Nos Grupos B e C, quando avaliámos os escores de dor de t1 a t4, percebemos uma tendência decrescente na intensidade de dor ao longo do tempo. Não foi encontrada diferença es-tatisticamente significante nos grupos estudados, apesar de os grupos dextrocetamina (A e B) terem apresentado escores menores de dor. A morfina em altas doses (10 mg) foi testada de forma intra-articular em pós-operatório de ATJ, com menores esco-res de dor, menor consumo e tempo de resgate de analgé-sicos quando comparada ao placebo 35. Fu e col. 7, usaram morfina 5 mg, bupivacaína 15 mg e 1 mL de betametasona IA em pós-operatório de ATJ e obtiveram menores escores de dor. Carvalho Junior e col. 39 mostraram que a injeção intra-articular e peri-incisional de bupivacaína, morfina e epinefrina foi ineficaz na redução da dor pós-operatória em ATJ. Ritter e col. 52 também usaram morfina e bupivacaína intra-articular no pós-operatório de ATJ e não encontraram melhoria na analgesia. Dal e col. 9 usaram a cetamina racêmica IA na dose de 0,5 mg.kg⁻¹ em pós-operatório de artroscopia do joelho e pro-moveram analgesia prolongada e efetiva com poucos efeitos adversos, porém com resultados semelhantes aos da neos-tigmina, mas não melhores do que a bupivacaína. Rosseland e col. 25 analisaram 77 pacientes após uso de 10 mg de ce-tamina racêmica IA e 10 mg intramuscular comparada com 10 mL IA de solução salina em artroscopia do joelho e não houve diferença entre o grupo que usou cetamina racêmica e o que usou solução salina, ambos por via IA. Não foram encontrados estudos com a dextrocetamina IA em PO de ATJ. Há o estudo de Borner e col. 11 que usou a dextrocetamina IA, mas em PO de artroscopia do joelho, e concluiu que a dose 0,25 mg.kg⁻¹ diminuiu a intensidade de dor e o consumo de opioides quando comparados com a apli-cação IA de bupivacaína e solução salina. Em nosso estudo, a dose de 0,25 mg.kg⁻¹ demonstrou tendência na redução dos escores de dor e consumo de opioides, semelhante a Borner e col. 11, porém sem diferença estatística e em procedimento que gera maior estímulo nociceptivo.
Outra forma de testar a dextrocetamina seria injeção intra-articular contínua através de cateter no pós-operatório, em várias doses, e não somente uma aplicação logo ao término do procedimento. A bupivacaina foi testada por via intra-articular antes e depois da artroscopia do joelho, com melhores resultados no controle da dor quando administrada antes da cirurgia, o que sugere efeito preemptivo 49. Como a cetamina tem sido relatada como efetiva no controle da hiperalgésia pós-operatória, também poderia ser usada antes do procedimento, para avaliar uma possível ação preemptiva, bem como a dor poderia ser avaliada semanas após a cirurgia, para testar seu efeito na dor crônica pós-cirúrgica.

O analgésico de resgate poderia ser aplicado por bomba de infusão controlada pelo paciente, para evitar demora na administração ou solicitação. Isso pode ser uma observação relevante quando encontramos elevados escores de dor nos tempos t1 e t3 (≥ 4) associados a pouca demanda do analgésico de resgate (< 3). Um aspecto a ser ressaltado é a cultura de que a dor deve fazer parte do pós-operatório, também poderia ser usada antes do procedimento, para testar uma possível ação preemptiva, bem como a dor poderia ser avaliada semanas após a cirurgia, para testar seu efeito na dor crônica pós-cirúrgica.

O tempo ideal de permanência da solução injetada no joelho antes da abertura do dreno deve ser mais bem determinado. A maioria dos trabalhos que usam dreno abrem-no entre 10 min 17 e 15 min35, há após, pelo fluxo de sangue hipercinético, deslocamento do fármaco do seu receptor periférico, o que influencia na qualidade e duração do efeito analgésico. Uma possibilidade interessante seria o uso de dreno de sucção, o que garantiu a permanência de toda a solução injetada dentro da articulação. Estudo recente demonstrou não haver benefício no uso do dreno de sucção no pós-operatório de ATJ41.

A média do consumo de doses da medicação de resgate nas primeiras 24 horas de PO foi a primeira variável estudada na avaliação indireta, na qual observamos tendência do Grupo A em apresentar valor menor do que os grupos B e C. Resultados semelhantes foram encontrados por Borner e col.11 e Dal e col.9 A segunda variável estudada foi “Tr” (tempo necessário para solicitação da primeira dose do analgésico), no qual o grupo com menor dose de dextrocetamina obteve analgesia mais prolongada, com espera maior para solicitar analgesia de resgate (177,4 min), sem diferença estatística. Esse resultado difere de Dal e col.9 que encontraram menor tempo para primeira dose de analgésico nos grupos que receberam 0,5 mg.kg⁻¹ de cetamina racêmica, com médias de 109,3 min contra 63,3 min para o grupo que recebeu 20 mL de solução salina no PO de artroscopia do joelho.

Alguns efeitos adversos foram encontrados durante o estudo, mas em nenhum momento comprometeram sua continuação. Em trabalhos anteriores, o aparecimento de efeitos colaterais também não se mostrou fator limitante ao uso de cetamina IA 9,26. Os poucos efeitos colaterais podem ser explicados pela relativamente baixa dose usada, a vascularação pobre intra-articular, pelo grau de sinovectomia no transoperatório ou pelo efeito somente local. São necessários estudos para determinar a dose ótima de dextrocetamina intra-articular e avaliar sua concentração plasmática e a de seus metabólitos, no intuito de diferenciar efeito sistêmico do periférico. Um exemplo é o estudo de Joshi e col.17 que dosaram a morfina plasmática e encontraram concentrações muito baixas, insuficientes para promover alganasia pós-operatória, o que sugere efeito somente local.

Para explicar a ausência de significância nos escores de dor entre os grupos, podem ser levadas em consideração algumas justificativas, como o número pequeno de pacientes por grupo, o efeito analgésico residual da técnica anestésica e o possível efeito preemptivo da anestesia subaracnoidea, que poderia impedir a sensibilização de neurônios medulares e proporcionar alganasia pós-operatória. Ainda, a dose e o volume ideais da dextrocetamina para uso intra-articular devem ser mais bem determinados. Sabe-se que as doses habitualmente usadas, de 5 mg.kg⁻¹ intramuscular ou 1 a 2 mg.kg⁻¹ endovenosa, não são as ideais, pois promovem com frequência fenômenos dislépticos no paciente. Os benefícios da dextrocetamina existem quando ela é usada em pequenas doses (0,1 a 0,25 mg.kg⁻¹ peso¹) pela via parenteral, por causa da menor afinidade pelos receptores NMDA, o que propicia analgesia adequada e redução do consumo de analgésicos no PO.12,41. Em nosso estudo, a menor dose de dextrocetamina usada (Grupo A: 0,25 mg.kg⁻¹ peso¹) foi a que mostrou melhor tendência na redução dos escores de dor e demonstrou a possibilidade de melhores efeitos da cetamina também em doses mais baixas pela via intra-articular.

Neste estudo, nos grupos que usaram a dextrocetamina houve tendência a se observarem escores menores de dor sem superioridade significativa em relação à solução salina no pós-operatório de artroplastia total do joelho.

REFERÊNCIAS/REFERENCES

Justificativa e objetivos: A artroplastia total da rodilha (ATR) está associada a um significativo dolor postoperatorio. Muchos agentes de uso intraarticular (IA) han sido usados para la analgesia postoperatoria con resultados inconsistentes. El enantiómetro cetamina S(+), la dextroretamina, recién fue lanzado comercialmente con una potencia analgésica y menos efectos indeseados que la forma racémica. Un estudio prospectivo, experimental, aleatorio y doble ciego se realizó con el objetivo de evaluar la eficacia analgésica del uso de la dextroretamina por vía intraarticular en pacientes sometidos a la ATR primaria.

Método: Se evaluaron 56 pacientes divididos en tres grupos: Grupo A (n = 19), que recibió 0,25 mg kg⁻¹ de peso de dextroretamina, diluido en 20 mL de solución fisiológica al 0,9%; Grupo B (n = 17) 0,5 mg kg⁻¹ de peso diluido de la misma forma; y Grupo C (n = 20), solamente con 20 mL de solución fisiológica al 0,9% intrarticular, inmediatamente después del término del procedimiento y de la colocación del drena je. Todos los pacientes tuvieron acceso a la terapia analgésica de rescate, siendo usada solamente morfina endovenosa. Se evaluaron las 2, 6, 12 y 24 horas del postoperatorio, con la mensuración de la intensidad del dolor por la Escala Analógica Visual (EAV), el uso de la medicación de rescate por la evaluación del tiempo transcurrido entre la inyección intraarticular de la solución y la primera dosis de rescate, su consumo total a las 24 horas y los efectos adversos.

Resultados: Los grupos dextroretamina obtuvieron menores puntajes de dolor cuando se les comparó con la solución salina. La menor dosis de dextroretamina intraarticular (Grupo A: 0,25 mg kg⁻¹) usada, arrojó mejores puntajes de dolor y menos analgésico de rescate, con un tiempo de espera mayor para su solicitud. Los efectos adversos no fueron frecuentes. Los resultados con menores puntajes de dolor en los grupos que usaron la dextroretamina son una tendencia, porque no hubo una significancia estadística entre los grupos.

Conclusiones: En este estudio y con esa muestra, el efecto analgésico de la dextroretamina IA no rebasó la solución salina en el periodo del postoperatorio de la ATR.

Descriptores: ANALGESIA, Postoperatorio, intraarticular; ANALGÉSICO, Cetamina; CIRUGÍA, Ortopédica, artroplastía de rodilla; FARMACOLOGÍA, Isomería.