The Effect of “Multiphase Sedation” in the Course of Computed Tomography and Magnetic Resonance Imaging on Children, Parents and Anesthesiologists

Guray Demir 1, Zafer Cukurova 2, Gulay Eren 2, Yasemin Tekdos 2, Oya Hergunsel 2

Background and objectives: We aimed to investigate the effect on children undergoing Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), their parents and attending anesthesiologist of “multiphase sedation” which we define as “the intended sedation level achieved with one or more agents through the same or different routes with more than one administration”.

Material and Methods: One hundred children and their parents were randomly allocated to one of two study groups. In phase 1; in Group I the patients were given midazolam (0.5 mg.kg⁻¹) in 5 mL fruit juice, and the ones in control group (Group II) were given only fruit juice. After intravenous (iv) cannulation; in phase II, boluses of propofol were given to achieve the adequate sedation for imaging. Anxiety scores of children and their parents were recorded using Oucher scale and STAI, respectively, and parental satisfaction was evaluated by visual analogue scale (VAS). The number of attempts for iv cannulation, length of time for preparation, and amount of hypnotics were recorded.

Results: Anxiety state of children was similar between groups before premedication, but later it was lower in Group I. Before procedure, STAI score of parents was similar and later it was lower in Group I. Parental satisfaction in Group I was higher. The number of attempts for iv cannulation and required propofol dose was less in Group I.

Conclusion: “Multiphase sedation” procedure provides children to feel less pain and anxiety, and decreases parental anxiety while increasing their satisfaction. It supplies a comfortable and safe sedation, as it provides a short and problem-free preparation process for the attending anesthesiologist as well.

Keywords: Anxiety; Child; Deep Sedation; Magnetic Resonance Imaging; Tomography.

INTRODUCTION

Children frequently require sedation in order to be cooperative and immobile for imaging modalities in radiology units, namely the magnetic resonance imaging (MRI) and computerized tomography (CT) procedures 1-6. Moreover, imaging procedures that are not applied under adequate sedation necessitates repetition of the procedure, resulting in a significant loss of revenue to the institution, lost work time and, perhaps most importantly, delayed diagnosis.

A variety of sedative agents, including chloral hydrate, benzodiazepines, pentobarbital, methohexital, ketamine, thiopental and propofol have been effectively used through either oral, rectal or parenteral routes to facilitate imaging procedures in children 6-12. However, no data exist on whether a specific anesthetic technique is superior. Agent administered and the route of administration brings about a variety of advantages and disadvantages. It is well known that rectally administered chloral hydrate causes prolonged sedative effect due to its active metabolites; intramuscular or intravenous (iv) ketamine endangers airway safety increasing the secretions; and benzodiazepines alone may fail to provide adequate sedation 6-9.

Intravenously administered propofol and agents alike have advantages of rapid onset, effective and adjustable anesthesia with rapid recovery 10-13. Therefore, iv techniques are preferable.

Sedation is required not only for facilitation of immobility necessary to complete MRI and CT in children but also to reduce both child's and parental anxiety. As was revealed by the study of Kain et al. 14 parental anxiety is directly correlated with children's anxiety and their coping with invasive medical procedures.

In this study, we aim to define “multiphase sedation” and study its effects on child, parents and the attending anesthesiologist. We define “multiphase sedation” as the intended sedation achieved with one or more agents through the same or different routes with more than one administration. In accordance with the definition, in the first phase of sedation, oral midazolam was given, then an iv line (a pain inducing pro-
procedure) was inserted under mild-moderate level of sedation, and then child was separated from parents. Thus, it is aimed to cause less pain and agitation in a child, and decrease parental anxiety while increasing their satisfaction. In the second phase, intravenous propofol was administered in order to provide sufficient depth of sedation for completion of the imaging acquisition.

MATERIALS AND METHODS

With the approval of hospital ethics committee and informed consent of the parents, 100 children (ASA Physical status I-II) between 2-12 years of age, scheduled to undergo MRI or CT procedures with sedation as outpatients, and their parents were allocated to the study. Exclusion criteria were contraindication to sedation because of severe respiratory or metabolic deterioration, restricted oral intake or refusal of the patient for oral agent given for sedation, or failure of peripheral iv access. The parents with lower intellectual state who are supposed to fail to take the test for State and Trait Anxiety Inventory (STAI) were also excluded. The children and their parents were randomly assigned to one of two treatment groups. The subjects and the anesthesiologist were both blinded to the agents given. In the first phase of sedation, the children in the study group (n = 50, Group I, “multiphase sedation” group) were given 0.5 mg.kg⁻¹ midazolam (F. Hoffmann-La Roche Ltd. Basel, Switzerland), in 3-5 mL of clear fruit juice and the ones in control group (n = 50, Group II) were given the same amount of fruit juice only. Waiting 30 minutes after the application of first phase of sedation, children were taken together with parents to the preparation room where their iv access with 24 Gauge cannula was achieved. Later they were taken apart from their parents to the imaging room. ECG, SpO₂ and tension arterial were monitored. According to the child’s clinical properties and length of imaging process, in the second phase, 1% propofol (Fresenius Kabi, Deutschland GmbH D-61346, Bad Homburg v.d.H, Germany) was administered 2 mg.kg⁻¹.min⁻¹ and titrated to provide the adequate depth of sedation, and their amount was recorded.

Children were allowed to breathe spontaneously and were just assisted with free flow of oxygen via facemask. Children were evaluated by Oucher scale, the Hispanic version ((http://www.oucher.org/index.html) for pain and anxiety before first phase of sedation, during and after iv line insertion, and after separation from parents. We evaluated the parental anxiety before and after the imaging process using the State-Trait Anxiety Inventory which is a standard tool used by psychologists to assess situational anxiety. It consists of two 20-question scores to which respondents are asked to indicate to what degree the item describes their feelings on a four-point Likert-type scale (where 1 = “not at all” and 4 = “very much so”). The first part (STAI I) measures the current emotional state of the subject, including immediate feelings of apprehension, nervousness and worry. The second set of questions (STAI II) measures the subject’s personality trait or how the person generally feels. Because pediatric anesthesia is a discrete event, parents in the present study completed the state anxiety items as a measure of parental anxiety about their child’s anesthesia. Parents also revealed their level of satisfaction using a 100 mm visual analog scale (VAS) after the procedure. Other recorded parameters were the number of interventions for iv access and total time of stay at preparation room in the first phase; and in the second phase, required amount of propofol for adequate sedation were all recorded and evaluated.

Statistics

Statistical analysis was performed by SPSS (Statistical Package for Social Sciences) for Windows 15.0 software. In addition to descriptive statistical methods (mean ± standard deviation), one-way Anova test was used to compare parameters with normal distribution, in the comparisons of more than two groups. Kruskal Wallis test was used to compare the parameters without normal distribution between more than two groups, and Mann Whitney U test was performed to determine the group that caused the difference. In the comparisons between two groups Student t test was used to compare parameters with normal distribution and Mann Whitney U test for the parameters without normal distribution. Comparisons of qualitative data were performed with Chi-Square test. Statistical significance was assumed for p ≤ 0.05.

RESULTS

Demographic parameters were similar between groups (p > 0.05). Mean age of parents included in the study was 30.03 ± 5.70 years and female/male ratio was 65/35; mean age of children was 4.21 ± 2.90 years with a ratio of female/ male of 42/58. The anxiety scores of the children regarding the Oucher scale were similar in groups in the first phase of sedation (9.49 ± 25.17 vs 3.92 ± 7.16 in Group I and II respectively) (p = 0.555, p > 0.05). However, Oucher scores of children in Group I at the evaluation periods, during and after iv access, and on separation of children from parents, all were significantly lower than those in Group II (40.92 ± 27.15 with a median of 40, 8.57 ± 13.84 median 0, and 23.88 ± 29.71 with a median 10 vs 80.00 ± 25.69 with a median of 90, 25.29 ± 28.16 with a median of 20, 58.14 ± 35.34 with a median of 70, respectively) (p = 0.001, p = 0.001, p = 0.001) (Table I).

STAI II scores indicating the personality trait of the parents, which may affect the immediate feelings and emotional state of them, didn’t show any difference between groups (p = 0.460). Likewise, results regarding the anxiety state of parents through STAI I scores, in the first phase, didn’t reveal any significance (46.97 ± 10.06 vs 43.92 ± 8.22; p = 0.099, p > 0.05). But in the second phase, it was 41.36 ± 8.23 in Group I and 48.07 ± 9.10 in Group II, which was statistically significant (p = 0.001, p < 0.05). Parents of the children in Group I were less anxious. Moreover, parental satisfaction evaluated by VAS was, as well, higher in Group I by 80.92 ± 19.57 vs
72.84 ± 18.27 (p = 0.035, p < 0.05). Therefore, it is seen that application of multiphase sedation increased parents’ satisfaction while decreasing anxiety (Table II).

Concerning the administrator, the results were all on behalf of Group I. Number of attempts of iv access and the time of stay in the preparation room were lower in Group I. So, multiphase sedation provided a short and comfortable preparation process for the attending anesthesiologist as well. Moreover, children in Group I needed less amount of propofol in phase II to achieve the deep sedation needed for the imaging process (1.36 ± 1.11 mg.kg⁻¹ propofol in Group I vs 2.47 ± 0.67 mg.kg⁻¹ propofol in Group II; p = 0.001). Thus, recovery time was statistically lower in Group I (21.06 ± 6.58 min in Group I and 26.35 ± 8.07 min in Group II, p = 0.001) (Table III).

DISCUSSION

Apprehension and anxiety are normal in children undergoing medical procedures. Identifying and alleviating this anxiety is beneficial for many reasons besides enhancement of psychological well-being. In recent years, anesthesiologists have increased their efforts to probe the emotional experiences of their patient’s parents in addition to the patients themselves as they are in strict correlation.

Variables such as the age and temperament of the child and the state and trait anxiety of the parent have been identified as predictors for the occurrence of negative postoperative behavioral changes. A significant proportion of parents experience anxiety and distress before their child’s surgery or medical intervention. Previously it has been shown that there is a very high correlation between parental anxiety and child anxiety, and interventions must target parents as well as children. Furthermore, parental anxiety is a relevant concern in its own right.

The STAI is a well-validated self-report measure of anxiety consisting of two versions, one assessing the dispositional or more stable trait of anxiety proneness, and the other assessing transient or situational anxiety. Miller et al. found that parents of pediatric surgery patients experience greater levels of anxiety and higher need for information than do adults who are undergoing surgery themselves.

During the process of MRI or CT scanning, the children are mostly prepared for the procedure with their parents accompanying them in the preparation room and they are always anxious and scary on iv line insertion unless they are sedated. And this period of crying and fear for the child inevitably makes the parents nervous, which in turn increases the child’s anxiety. So the sedation of child in this period would help to overcome this problem and provide additional effect to the sedation during the radiological procedure. To establish this hypothesis, we defined the “multiphase sedation” for radiological procedures; and its application clearly revealed that sequential sedation in two phases decreased both the child and parental anxiety, and increased parental satisfaction as well. Prior to the first phase, parents’ state and trait anxiety scores were similar, but after the procedure parents of the children receiving the sequential sedation were less anxious as was revealed by the lower situational anxiety scores (STAI I) of this group.

Many reports of a successful program with the use of various different forms of sedation, including oral chloral hydrate, iv pentobarbital, iv fentanyl, rectal thiopental and so forth, have been published. Sedation with parenterally administered agents proved to be advantageous and safe as it provides rapid onset and recovery of sedation, but rectally administered agents are hardly controlled with prolonged effects.

Table I – Comparison of Groups in Respect to Child Anxiety

<table>
<thead>
<tr>
<th></th>
<th>Group I (n:50)</th>
<th>Group II (n:50)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oucher score before 1st phase</td>
<td>9.49 ± 25.17 (median 0)</td>
<td>3.92 ± 7.16 (median 0)</td>
<td>0.555*</td>
</tr>
<tr>
<td>Oucher score at time of iv line insertion</td>
<td>40.92 ± 27.15 (median 40)</td>
<td>80.00 ± 25.69 (median 90)</td>
<td>0.001**</td>
</tr>
<tr>
<td>Oucher score after iv line insertion</td>
<td>8.57 ± 13.84 (median 0)</td>
<td>25.29 ± 28.16 (median 20)</td>
<td>0.001**</td>
</tr>
<tr>
<td>Oucher score on separation from parents</td>
<td>23.88 ± 29.71 (median 10)</td>
<td>58.14 ± 35.34 (median 70)</td>
<td>0.001**</td>
</tr>
</tbody>
</table>

Group I: “multiphase sedation” group, Group II: control group; p* Mann Whitney U test; p** statistically significant (p < 0.05).

Table II – Comparison of Groups in Respect to Parental Anxiety and Parental Satisfaction

<table>
<thead>
<tr>
<th></th>
<th>Group I (n:50)</th>
<th>Group II (n:50)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait anxiety (STAI II)</td>
<td>47.51 ± 9.64</td>
<td>46.25 ± 7.03</td>
<td>0.460†</td>
</tr>
<tr>
<td>State anxiety (STAI I) before the procedure</td>
<td>46.97 ± 10.06</td>
<td>43.92 ± 8.22</td>
<td>0.099†</td>
</tr>
<tr>
<td>State anxiety (STAI I) after the procedure</td>
<td>41.36 ± 8.23</td>
<td>48.07 ± 9.10</td>
<td>0.001‡</td>
</tr>
<tr>
<td>Parental satisfaction after procedure (100mm VAS)</td>
<td>80.92 ± 19.57</td>
<td>72.84 ± 18.27</td>
<td>0.035‡</td>
</tr>
</tbody>
</table>

Group I: “multiphase sedation” group, Group II: control group; p† Student t test; p‡ statistically significant (p < 0.05). STAI: State and Trait Anxiety Inventory.

Table III – The Data of Anesthetic Procedures

<table>
<thead>
<tr>
<th></th>
<th>Group I (n:50)</th>
<th>Group II (n:50)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of attempts for iv line insertion (mean)</td>
<td>1.14 ± 0.50</td>
<td>1.94 ± 1.32</td>
<td>0.001**</td>
</tr>
<tr>
<td>Time of stay at preparation room (min)</td>
<td>4.72 ± 1.68</td>
<td>8.30 ± 2.76</td>
<td>0.001‡</td>
</tr>
<tr>
<td>Amount of propofol used in 2nd phase (mg.kg⁻¹)</td>
<td>1.36 ± 1.11</td>
<td>2.47 ± 0.67</td>
<td>0.001‡</td>
</tr>
<tr>
<td>Recovery time (min)</td>
<td>21.06 ± 6.58</td>
<td>26.35 ± 8.07</td>
<td>0.001**</td>
</tr>
</tbody>
</table>

Group I: “multiphase sedation” group, Group II: control group; p* Mann Whitney U test; p‡ Chi-square test; p** statistically significant (p < 0.05).
Anesthesiologists usually rely on medications that consistently provide reliable levels of deep sedation. Recently, an alternative technique describing the use of rectally administered midazolam and S-(+)-ketamine was described. This technique was superior for a standard technique of general anesthesia with endotracheal intubation. Sedative premedication with benzodiazepines is clearly effective in reducing anxiety and the amnesic effects may also help to reduce future distress with anesthesia. Negative postoperative behavior may be reduced due to reduced preoperative anxiety or due to midazolam related amnesia. It has been shown that recall of going to sleep is lesser in midazolam-treated children compared with control. Anterograde amnesia occurs as early as 10 min after administration of oral midazolam.

Comparing our two-phased procedure with sedation techniques that rely mainly on the intravenous infusion of hypnotic drugs, such as propofol, the dosage schedule can more easily be adjusted to the individual patient since the amount of iv supplementation that was required depended on the duration of the procedure rather than individual factors. In the case of propofol, as was shown in the study by Levati et al., meticulous attention to the monitored variables, such as heart rate and blood pressure, was required to titrate the infusion of propofol in accordance with the variations in the depth of anesthesia. That study also revealed that smaller children required significantly higher induction and maintenance doses (10 mg.kg^{-1}.h^{-1} vs. 7 mg.kg^{-1}.h^{-1}) of propofol to ensure immobilization. In our study, the procedure described could reduce the required amount of hypnotics we used for the completion of imaging, which can be considered as a secondary gain of combined agents, which in turn is a matter of our objective.

The range of recovery time following sedation for MRI with intravenous continuous infusion of propofol was reported to be 15-60 min. In our study, it is clearly seen that combination of oral midazolam with the hypnotics as needed by the sequential method described reduced significantly the complete recovery time following sedation. This method also reduced the challenge of both the patient and the anesthesiologist in charge as it decreased the time of staying in the preparation room and the number of attempts for iv line insertion.

Review of claims associated with monitored anesthesia care found that 75% of patients who experienced injury related to sedation received a combination of two or more drugs, e.g. a benzodiazepine and an opioid or propofol or others. We would like to stress that incidence of complications in this study was null for several reasons. Prior to inclusion in the study, a careful examination by an experienced anesthesiologist assured that no child with a suspected problem in airway management was included. In addition, the method was used by experienced staff only. As shown in the literature, major adverse events requiring resuscitative care occurred in 1.2% of patients given a midazolam-pentobarbital-fentanyl combination. We are actually aware of the potential of adverse events and we use this protocol in daily practice in our institution with some measures and minor interventions, such as repositioning of the child’s head and neck or removal of secretions prior to the start of scanning.

CONCLUSION

Our study indicates that a sedation technique based on multiphasic procedure not only alleviates both child and parents’ anxiety but also provides advantages like less challenge for the anesthesiologist for preparing the child for imaging acquisition process, less amount of hypnotics required for a sufficient sedation, and thus, less time of complete recovery and less adverse events following sedation. We propose that “multiphase sedation” technique is a safe and advantageous technique for sedation of children for radiological imaging modalities such as MRI and CT scanning.
O Efeito da “Sedação Multifásica” no Exame de Tomografia Computadorizada e Ressonância Magnética em Crianças, Pais e Anestesiologistas

Guray Demir¹, Zafer Cukurova², Gulay Eren², Yasemin Tekdos², Oya Hergunsel²

Justificativa e objetivos: O nosso objetivo foi investigar o efeito da “sedação multifásica” em crianças submetidas à Tomografia Computadorizada (TC) ou Ressonância Magnética (RM), em seus pais e nos anestesiologistas responsáveis. “Sedação multifásica” foi definida como “o nível de sedação pretendido obtido com um ou mais agentes através da mesma via ou vias diferentes com mais de uma administração”.

Material e Métodos: Cem crianças e seus respectivos pais foram randomicamente designados para um dos dois grupos de estudo. Na fase 1, os pacientes do Grupo I receberam midazolam (0,5 mg.kg⁻¹) em 5 mL de suco de frutas e os pacientes do Grupo II (grupo controle) receberam apenas suco de frutas. Na fase 2, após a canulação intravenosa (iv), bolus de propofol foi administrado para alcançar a sedação adequada para realização do exame de imagem. Os escores de ansiedade das crianças e de seus pais foram registrados usando a escala de Oucher e o IDATE, respectivamente, e a satisfação dos pais foi avaliada pela escala analógica visual (EAV). O número de tentativas para canulação iv, tempo de preparação e quantidade de hipnóticos foram registrados.

Resultados: O estado de ansiedade das crianças foi semelhante entre os grupos antes da pré-medicação, porém mais tarde esse nível foi menor no Grupo I. Antes do procedimento, o escore dos pais no IDATE foi semelhante, mas depois foi menor no Grupo I. A satisfação dos pais no Grupo I foi maior que no Grupo II. O número de tentativas de canulação iv e a dose necessária de propofol foi menor no Grupo I.

Conclusão: O procedimento de “sedação multifásica” diminui a dor e a ansiedade das crianças e a ansiedade dos pais, aumentando a sua satisfação. Ele fornece uma sedação confortável e segura, pois possui um processo de preparação curto e sem problemas também para o anestesiologista responsável.

Unitermos: ANESTESIA, Especializada, pediátrica; Ansiedade; Ressonância Magnética; SEDAÇÃO, Profunda; Tomografia.
estudo, o nosso objetivo foi definir a “sedação multifásica” e estudar seus efeitos nas crianças, pais e anestesiologistas. Definimos “sedação multifásica” como a sedação pretendida obtida com um ou mais agentes através da mesma via ou vias diferentes com mais de uma administração. De acordo com essa definição, midazolam oral foi administrado na primeira fase de sedação; em seguida, uma linha iv (um procedimento que provoca dor) foi inserida sob um nível de sedação leve/moderado e, posteriormente, a criança foi separada dos pais. Portanto, esse procedimento tem como alvo causar menos dor e agitação na criança e diminuir a ansiedade dos pais, enquanto aumenta sua satisfação. Na segunda fase, propofol iv foi administrado para proporcionar uma sedação profunda o bastante para realização do exame.

MATERIAIS E MÉTODOS

Com a aprovação do Comitê de Ética do hospital e o consentimento informado dos pais, 100 crianças (estado físico ASA I-II) entre 2-12 anos de idade, que seriam submetidas a procedimentos de RM ou TC com sedação como pacientes ambulatoriais, e seus pais foram selecionados para o estudo. Os critérios de exclusão foram contraindicação para sedação devido à grave deterioração metabólica ou respiratória, ingestão oral restrita ou recusa do paciente oral para sedação ou impossibilidade de obter acesso iv periférico. Os pais com menor capacidade intelectual que não conseguiram fazer o teste do Inventario de Ansiedade Traço-Estado (IDATE)15 também foram excluídos. As crianças e seus pais foram randomicamente designados para um dos dois grupos de tratamento. Tanto os pacientes quanto o anestesiologista desconheciam os agentes administrados. Na primeira fase de sedação, as crianças do Grupo I (n = 50, grupo de “sedação multifásica”) receberam 0,5 mg.kg⁻¹ de midazolam (F. Hoffmann-La Roche Ltd.® Basel, Suíça), em 3-5 mL de suco de frutas de cor transparente e os pacientes do Grupo II (n = 50, grupo controle) receberam só suco de suco de frutas. Depois de esperar 30 minutos após a aplicação da primeira fase de sedação, as crianças e seus pais foram levados para a sala de preparação onde o acesso iv foi obtido com uma cânula 24-G. Posteriormente, as crianças foram separadas dos pais e levadas para a sala de imagem. ECG, SpO₂ e pressão arterial foram monitorados. Na segunda fase, de acordo com as condições clínicas da criança e o tempo do exame de imagem, propofol 1% (Fresenius, Fresenius Kabi, Deutschland GmbH D-61346, Bad Homburg v.d.H, Alemanha) foi administrado a uma dose de 2 mg.kg⁻¹.min⁻¹ e titulado para fornecer a profundidade adequada de sedação, e a quantidade foi registrada.

As crianças puderam respirar espontaneamente sendo assistidas apenas com fluxo livre de oxigênio através de máscara facial. As crianças foram avaliadas com o uso da escala de Oucher, versão hispânica (http://www.oucher.org/index.html) para dor e ansiedade antes da primeira fase de sedação, durante e após a inserção da linha iv e após a separação dos pais. A ansiedade dos pais foi avaliada antes e depois o processo para exame de imagem, usando o IDATE15, que é uma ferramenta padrão usada por psicólogos para avaliar a ansiedade situacional. O IDATE consiste em 20 perguntas administradas em duas etapas para identificar níveis de ansiedade (traço e estado) indicados pelos entrevistados para descrever seus sentimentos, usando uma escala de quatro pontos do tipo Likert (onde 1 = “nenhuma ansiedade” e 4 = “muita ansiedade”). A primeira etapa de perguntas (IDATE I) mede o estado emocional do sujeito, incluindo sentimentos imediatos de nervosismo, apreensão e preocupação. A segunda etapa (IDATE II) mede o traço da personalidade do sujeito ou como a pessoa geralmente se comporta. Como a anestesia pediátrica é um evento distinto, os pais no presente estudo responderam as perguntas sobre o estado de ansiedade como uma medida da ansiedade dos pais sobre a anestesia dos filhos.

Os pais também relataram seus níveis de satisfação usando a Escala Analógica Visual (EAV) de 100 mm após o procedimento. Outros parâmetros avaliados foram o número de intervenções para o acesso iv e o tempo total de permanência na sala de preparação na primeira fase e a quantidade necessária de propofol para sedação adequada na segunda fase.

Análise estatística

A análise estatística foi realizada usando o SPSS (Statistical Package for Social Sciences) versão para Windows 15.0. Além disso, métodos estatísticos descritivos (média ± desvio padrão) e o teste ANOVA para um critério foram utilizados para comparar os parâmetros de distribuição normal nas comparações de mais de dois grupos. O teste de Kruskal-Wallis foi utilizado para comparar os parâmetros sem distribuição normal entre mais de dois grupos e o teste U de Mann-Whitney foi realizado para determinar o grupo que causou a diferença. Nas comparações entre os dois grupos, o teste t de Student foi usado para comparar os parâmetros de distribuição normal e o teste U de Mann-Whitney para os parâmetros sem distribuição normal. As comparações dos dados qualitativos foram feitas com o teste do Qui-quadrado. A significância estatística foi considerada para p ≤ 0,05.

RESULTADOS

Os parâmetros demográficos foram similares entre os grupos (p > 0,05). A média de idade dos pais incluídos no estudo foi de 30,03 ± 5,70 anos e a razão homem/mulher foi de 65/35; a média de idade das crianças fora de 4,21 ± 2,90 anos, com uma razão homem/mulher de 42/58. Os escores de ansiedade das crianças medidos pela escala de Oucher foram semelhantes entre os grupos na primeira fase de sedação (9,49 ± 25,17 vs. 3,92 ± 7,16 nos Grupos I e II, respectivamente, p = 0,555, p > 0,05). Porém, os escores das crianças do Grupo I na escala de Oucher nos períodos de avaliação, durante e após o acesso iv e na separação das crianças dos pais, foram significativamente menores que os escores do Grupo II (40,92 ± 27,15, com uma mediana de 40,
Os escores no IDATE II, indicando o traço de personalidade dos pais, que pode afetar os sentimentos e o estado emocional imediato deles, não mostraram qualquer diferença entre os grupos (p = 0,460). Da mesma forma, os os escores no IDATE I sobre o estado de ansiedade dos pais na primeira fase não revelaram qualquer significância (46,97 ± 10,06 vs. 43,92 ± 8,22; p = 0,099, p > 0,05). Porém, na segunda fase os escores foram 41,36 ± 8,23 no Grupo I e 48,07 ± 9,10 no Grupo II, o que foi estatisticamente significante (p = 0,001, p < 0,05). Os pais das crianças do Grupo I estavam menos ansiosos. Além disso, a satisfação dos pais avaliada pela escala EAV também foi maior no Grupo I, 80,92 ± 19,57 vs. 72,84 ± 18,27 (p = 0,035, p < 0,05). Portanto, observa-se que a administração de sedação multifásica aumentou a satisfação dos pais e diminuiu a ansiedade (Tabela II).

Quanto ao anestesiologista em exercício, todos os resultados foram favoráveis ao Grupo I. O número de tentativas de acesso IV e o tempo de permanência na sala de preparação foram menores no Grupo I. Portanto, a sedação multifásica propiciou um processo curto e confortável de preparação também para o anestesiologista. Além disso, as crianças do Grupo I precisaram de uma quantidade menor de propofol na fase 2 para uma sedação profunda o suficiente para o processo de imagem (1,36 ± 1,11 mg.kg⁻¹ de propofol no Grupo I vs. 2,47 ± 0,67 mg.kg⁻¹ de propofol no Grupo II, p = 0,001). Desse modo, o tempo de recuperação foi estaticamente inferior no Grupo I (21,06 ± 6,58 min no Grupo I e 26,35 ± 8,07 min no Grupo II, p = 0,001) (Tabela III).

DISCUSSÃO

Apreensão e ansiedade são normais em crianças submetidas a procedimentos médicos. Identificar e aliviar essa ansiedade é benéfico por vários motivos, além de aumentar o bem-estar psicológico. Nos últimos anos, os anestesiologistas concentraram seus esforços no sentido de avaliar as experiências emocionais dos pais de seus pacientes, além daquelas dos próprios pacientes, pois elas possuem uma estreita correlação.

Variáveis como idade e temperamento da criança e estado e traço de ansiedade dos pais foram identificadas como preditivos para a ocorrência de mudanças comportamentais pós-operatórias negativas. Uma proporção significativa dos pais sofre de ansiedade e angústia antes de uma intervenção médica ou cirúrgica em seus filhos. Já foi demonstrado anteriormente que há uma correlação muito grande entre a ansiedade parental e ansiedade criança, e as intervenções devem ter como alvo os pais e as crianças. Além disso, a ansiedade parental é uma preocupação relevante e legítima dos pais.

O IDATE é um instrumento bem validado de medida de autorrelato de ansiedade que consiste em duas versões, uma que avalia o traço disposicional ou mais estável de tendência à ansiedade e a outra que avalia a ansiedade transitória ou situacional. Miller e col. descobriram que os pais de...
pacientes cirúrgicos pediátricos experimentam níveis maiores de ansiedade e de necessidade de informação do que os próprios adultos quando são submetidos à cirurgia.

Durante o processo para exame de ressonância magnética ou tomografia computadorizada, as crianças ficam mais preparadas para o procedimento com os pais a companhá-las na sala de preparação e sempre ficam ansiosas e assustadas durante a inserção da linha IV, exceto quando sedadas. Esse momento de choro e medo da criança inevitavelmente faz com que os pais fiquem nervosos, o que por sua vez deve aumentar a ansiedade da criança. Portanto, a sedação da criança nesse período ajudaria a superar esse problema, bem como proporcionaria efeito adicional para a sedação durante o procedimento radiológico. Partindo dessa hipótese, nós optamos pela “sedação multifásica” para os procedimentos radiológicos, e sua aplicação revelou claramente que a sedação sequencial em duas fases diminuiu a ansiedade tanto da criança quanto dos pais e também aumentou a satisfação dos pais. Antes da primeira fase, os escores de ansiedade para o estado e traço dos pais foram similares, mas, depois do procedimento, os pais das crianças que receberam sedação sequencial estavam menos ansiosos, como demonstrado pelos baixos escores de ansiedade situacional (IDATE I) desse grupo.

Há muitos relatos publicados de programas bem-sucedidos com o uso de várias formas diferentes de sedação, incluindo hidrato de cloral oral, pentobarbital IV, fentanil IV, tiopental retal etc. A sedação com agentes parentericamente administrados provou ser vantajosa e segura, pois fornece rapidamente no início quanto na recuperação da sedação, mas os agentes administrados por via oral são mais comumente controlados e possuem efeito prolongado 6-9,13.

Os anestesiologistas normalmente dependem de medicamentos que consistentemente fornecem níveis confiáveis de sedação profunda. Recentemente, uma técnica alternativa descrevendo o uso de midazolam administrado por via retal e S-(+)-cetamina foi descrita. Essa técnica foi superior à técnica padrão de anestesia geral com entubação endotraqueal 3. A medicação pré-anestésica com benzodiazepínicos é claramente eficaz para reduzir a ansiedade, e os efeitos amnésicos também podem ajudar a reduzir o estresse futuro com a anestesia. O comportamento pós-operatório negativo pode ser minimizado devido à diminuição da ansiedade pré-operatória ou à amnésia relacionada ao midazolam. Há relato de que a lembrança da sonolência é menor nas crianças tratadas com midazolam em comparação aos controles 20. A amnésia anterógrada ocorre em um tempo tão curto como 10 minutos após a administração oral de midazolam 21.

No nosso processo de sedação em duas fases, comparado às técnicas de sedação que dependem principalmente da infusão intravenosa de fármacos hipnóticos como o propofol, a dosagem pode ser mais facilmente ajustada para cada paciente, pois a quantidade necessária de suplementação IV depende da duração do procedimento e não de fatores individuais. No caso do propofol, como foi mostrado no estudo de Levati e col. 22, atenção especial às variáveis monitoradas, tais como frequência cardíaca e pressão arterial, é necessária para titular a infusão de propofol de acordo com a profundidade da anestesia. Esse estudo também revelou que as crianças menores exigem indução e doses de manutenção significativamente maiores (10 mg.kg-1.h-1 versus 7 mg. kg-1.h-1) de propofol para garantir a imobilização. Em nosso estudo, o procedimento descrito permitiu reduzir a quantidade necessária de hipnóticos que utilizamos para a conclusão do exame de imagem, o que pode ser considerado como um ganho secundário da combinação de agentes que, por sua vez, era o nosso objetivo.

O tempo de recuperação após sedação para o exame de RM com infusão contínua de propofol IV foi descrito como sendo de 15-60 minutos 23. Em nosso estudo, ficou claro que a combinação de midazolam oral com os hipnóticos necessários, pelo método sequencial descrito, reduziu significativamente o tempo de recuperação completa após a sedação. Esse método também diminuiu o desafio tanto do paciente quanto do anestesiologista responsável, pois diminuiu o tempo de permanência na sala de preparação e o número de tentativas para inserção da linha IV.

Análise de reclamações associadas aos cuidados em monitoração anestésica descobriu que 75% dos pacientes que apresentaram lesão relacionada à sedação receberam uma combinação de duas ou mais drogas; por exemplo, um benzodiazepínico e um opioide ou propofol ou outros 24. Gostaríamos de salientar que a incidência de complicações neste estudo foi nula por várias razões. Antes da inclusão no estudo, um exame cuidadoso realizado por um anestesiologista experiente assegurou que nenhuma criança com suspeita de problemas ao manejo das vias aéreas foi incluída. Além disso, o método foi utilizado somente por profissionais experientes. De acordo com a literatura, os principais eventos adversos que exigiram reanimação ocorreram em 1,2% dos pacientes que receberam uma combinação de midazolam-pentobarbital-fentanil 25. Estamos cientes do potencial para eventos adversos e usamos esse protocolo na prática diária em nossa instituição exercendo algumas medidas e pequenas intervenções, tais como o reposicionamento da cabeça e do pescoço da criança ou remoção de secreções antes de iniciar a aquisição de imagens.

CONCLUSÃO

O nosso estudo indica que uma técnica de sedação com base em procedimento multifásico não só alivia a ansiedade da criança e dos pais, mas também oferece vantagens como menor desafio para o anestesiologista ao preparar a criança para o processo de imagem, menor quantidade de hipnóticos necessária para uma sufi ciente sedação e, portanto, menos tempo para a recuperação completa e menos eventos adversos após a sedação. Propomos que a técnica de “sedação multifásica” é segura e vantajosa na sedação de crianças para modalidades de imagens radiológicas, como ressonância magnética e tomografia computadorizada.
REFERÊNCIAS/REFERENCES

19. Cien niños y sus respectivos padres fueron rando-

Justificativa y objetivos: Nuestro objetivo fue investigar el efecto de la “sedación multifásica” en niños sometidos a la tomografía computadorizada (TC) o resonancia magnética (RM), en sus padres y en los anestesiologos responsables. La “sedación multifásica” fue definida como “el nivel de sedación pretendido que se obtiene con uno o más agentes por medio de la misma vía o vías diferentes con más de una administración”.

Material y Métodos: Cien niños y sus respectivos padres fueron ran-}

4, Julho-Agosto, 2012

519

O EFEITO DA “SEDAÇÃO MULTIFÁSICA” NO EXAME DE TOMOGRAFIA COMPUTADORIZADA E RESSONÂNCIA MAGNÉTICA EM CRIANÇAS, PAIS E ANESTESIOLOGISTAS

Referências/Referências