A Double-Blind Comparative Study between Generic Sevoflurane and Sevorane™

Alfredo Augusto Vieira Portella, TSA 1, Solange Maria Laurencel, TSA 2, Deise Martins Rosa, TSA 2, Maria Isabel Moscote Rivera 3, Santiago Osorno Quintero 4

INRODUCTION

In 1990, the Maruishi Pharmaceutical Company (Japan) obtained registration for the commercialization and clinical use of sevoflurane, initially in Japan. In 1992, Abbott Laboratory obtained the license and in 1995 it was commercialized in the United States.

Abbott sevoflurane is manufactured by Central Glass in Japan, and distributed all over the world, being commercialized in the United States under the name Ulthane™ and in Latin America under the name Sevorane™.

Sevoflurane used in Latin America, including Brazil, is commercialized by three pharmaceutical industries (Abbott, Cristália, and BioChimico), and its use is authorized by national supervising and regulatory organs.

After launched by Abbott, two other products were licensed and commercialized in Brazil: the first one in 2002, by Laboratório Cristália (Sevocris™); the second in 2007 by Instituto Biochimico as a generic drug. Baxter laboratory also commercializes sevoflurane; however, this product is not available in Brazil.

Sevoflurane is conditioned in three different vials and uses water (in different concentrations) or propylene glycol as stabilizer:

1. Abbott (Sevorane™, Ultane™): conditioned in plastic vials of polyethylene naphththalate (PEN) containing a high water content (at least 300 ppm).
2. BioChimico (Generic Sevoflurane): conditioned in amber glass vials USP type III containing low water content (65 ppm).
3. Cristália (Sevocris™): conditioned in amber glass vials USP type III containing 0.026% of propylene glycol.
4. Baxter (Svofast™, not available in Brazil): conditioned in epoxy phenol-coated aluminum vials containing medium water content (130 ppm).

Received from Hospital Universitário Pedro Ernesto, UERJ.

1. Professor, Chief of the Anesthesiology Department of Hospital Universitário Pedro Ernesto
2. Anesthesiologist at Hospital Universitário Pedro Ernesto – UERJ, Co-responsible for the CET/SBA of Hospital Universitário Pedro Ernesto – UERJ
3. Physician, R3 in Anesthesiology of the Programa de Especialidade Médica para Estrangeiros do Hospital Universitário Pedro Ernesto – UERJ
4. Physician, R2 in Anesthesiology of the Programa de Especialidade Médica para Estrangeiros do Hospital Universitário Pedro Ernesto – UERJ

Submitted on February 2, 2010.

Approved on May 10, 2010.

Correspondence to:
Dr. Alfredo Augusto V. Portella
Rua Aimirante Tamandaré, 53/402
Flamengo
CEP: 22210-060 – Rio de Janeiro, RJ, Brazil
E-mail: aportella@openlink.com.br
When the physical-chemical properties of those products are analyzed, subtle differences can be identified especially regarding type and content of impurities, which are due to the different manufacture processes used. However, chemical comparison testing demonstrates that the products are essentially identical.

Another question has risen: could the type of vial used to carry sevoflurane alter its pharmacological properties and consequently interfere with its clinical effects?

In an attempt to find the answer to this question, the present clinical study was designed to analyze the clinical efficacy of sevoflurane conditioned in different vials and with different water contents as seen with Generic Sevoflurane (BioChimico) and Sevorane™ (Abbott).

METHODS

After approval by the Ethics on Research Commission of the Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro, 64 adult patients of both genders, physical status ASA I or II, scheduled for elective surgeries under general anesthesia were randomly divided into two groups.

All patients signed a standardized informed consent at the Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro where the study was undertaken.

The statistician considered the number of patients enough for analysis of the data presented.

Two Datex-Ohmeda vaporizers that had never been used calibrated for Sevoflurane were set up for this study, one of them to be used only for Generic Sevoflurane (vaporizer #I) and the other only with Sevorane™ (vaporizer #II).

During the study the anesthesiologists who were responsible for anesthesia were unaware of the origin of the sevoflurane in the vaporizers. The study coordinator was the only one responsible for supplying the vaporizers and he was not in charge of any anesthesia. Only after the conclusion of the cases it was revealed which sevoflurane was used in each vaporizer.

Patients were pre-medicated with 7.5 mg of oral midazolam 60 minutes before anesthetic induction. In the operating room, after venipuncture of a peripheral vein in the upper limb, sedation was complemented if necessary with 1 mg of midazolam IV every 2 minutes until the patient fell asleep, but could be easily awaken by small sound or tactile stimuli (Ramsay 3 – BIS 75 to 80).

During the study the following parameters were monitored continuously: cardiac electric activity (ECG), heart rate (HR), peripheral oxygen saturation (SpO₂), expired fraction of CO₂ (PETCO₂), bispectral index (BIS), spectral edge frequency (SEF), intensity of the neuromuscular blockade (TOF), and the inspired (% INSPI) and expired (% EXP) concentrations of sevoflurane. Intermittently, non-invasive systolic (SBP) and diastolic (DBP) were also recorded.

Anesthesia was induced with the intravenous administration of 40 mg of 1% lidocaine, 0.7 mg.kg⁻¹ of propofol, 0.2 mg.kg⁻¹ of atracurium, and 5 µg.kg⁻¹ of fentanyl. Afterwards, 10 mg of dexamethasone was administered IV and the patient was ventilated for 4 minutes with 100% oxygen via face mask in a CO₂ absorber system. If 4 minutes after the administration of fentanyl BIS remained above 60, 4% sevoflurane was administered via a face mask until the BIS reached 40 to 45, at which time tracheal intubation under direct laryngoscopy was performed. Mechanical controlled ventilation was initiated and the respirator was adjusted to maintain P₂ETCO₂ between 30 and 35 mmHg.

Anesthesia maintenance was achieved with variable concentrations of sevoflurane, enough to maintain BIS between 40 and 45. Supplemental doses of 0.1 µg.kg⁻¹ of fentanyl were administered when SEF was above 15 Hz.

Subsequent doses of 10 mg of atracurium IV were administered to maintain TOF below 20% and the last dose was programmed to be administered approximately 30 minutes before the end of the procedure.

In order to normalize the P₂ETCO₂ and stimulate spontaneous ventilation, the tidal volume was reduced to 50% approximately 15 minutes before the end of the surgery, and 40 mg of parecoxib and 2 g of dypirone and distilled water 20 mL q.s.p. were administered at this moment.

Sevoflurane was discontinued at the end of the suture. At this moment, 0.2 mg of flumazenil IV were administered to antagonize any residual effect of midazolam that might interfere with the evaluation of awakening (spontaneous eye opening).

If at the end of anesthesia the TOF were below 75%, 2 mg of neostigmine associated with 1 mg of atropine IV were administered. If after 3 minutes a complete reversion of the neuromuscular blockade was not observed, half of the dose of neostigmine and atropine was administered. The objective of this conduct was to reverse any residual effect of the neuromuscular blockade that might interfere in the evaluation of hand squeeze on verbal command.

After aspiration of the oropharynx, the patient was extubated when he/she presented effective spontaneous ventilation, which was defined by the maintenance of normal levels of tidal volume (VT), respiratory rate (RR), SpO₂, and P₂ETCO₂ in room air.

Data for statistical analysis were collected at the following moments:

1. SBP, DBP, HR, SpO₂, and BIS – before induction; 3 minutes after propofol; every minute after the beginning of sevoflurane until before intubation; 1 minute after intubation; every 15 minutes during anesthesia until immediately before extubation; and every minute (for 5 minutes) after extubation.
2. TOF – 3 minutes after propofol; before intubation; every 15 minutes during anesthesia; and before and after decurarization.
3. P₂ETCO₂ – 1 minute after intubation and every 15 minutes during anesthesia until immediately before extubation.
4. % INSPI and % EXP – every minute after the onset of its administration until intubation; and every 15 minutes during anesthesia until immediately before extubation.
Statistical analysis

Initially all parameters were analyzed descriptively. For quantitative parameters this analysis was done through the observation of minimum and maximum values and calculation of means, standard deviation, and median. Absolute and relative frequencies were calculated for qualitative parameters.

The Student t test was used to compare means of two groups and when the supposition of normalcy of the data was refused the non-parametric Mann-Whitney test was used. The Chi-square test was used to test the homogeneity among proportions. To verify the behavior of the groups, considering the conditions of the study, Analysis of Variance for repeated measurements was used. A level of significance of 5% was used for the tests.

RESULTS

The age of the patients ranged from 17 to 87 years (mean 49.21, SD ± 18.13), of which 50 (78.1%) were females.

Both groups were homogenous and did not show significant differences regarding demographic characteristics (Table I).

Table II shows the surgeries performed on 64 patients by group of vaporizer.

Analysis of the data collected during the surgery

During the surgery, the following parameters were observed: SBP, DBP, SpO2, BIS, TOF, PTECO2, % INSP, % EXP, and SEF.

For each of those parameters, the moments that best represented their evolution along the surgery were selected.

Analysis of Variance for repeated measurements demonstrated that vaporizers did not present significant differences in the means in the moments analyzed.

Therefore, both vaporizers had similar behavior during surgery for the following parameters: SBP (p = 0.813); DBP (p = 0.520); HR (p = 0.692); SpO2 (p = 0.720); BIS (p = 0.270); TOF during the procedure (p = 0.118) and before neostigmine (p = 0.327); PTECO2 during surgery (p = 0.620) and before neostigmine (p = 0.330); % INSP (p = 0.240); % EXP (p = 0.188); and SEF (p = 0.439).

Study of anesthesia regression

The following periods of time were analyzed: between the beginning and end of the administration of sevoflurane; between the interruption of sevoflurane and spontaneous eye opening; between the interruption of sevoflurane and handgrip to verbal command (every 2 minutes after spontaneous eye opening); and from the interruption of sevoflurane until an Aldrete-Kroulik equal to or higher than 8 was achieved. Table III shows those times for both vaporizers.

On this table we can observe that vaporizers showed significant differences regarding the delta times between the interruption of sevoflurane and spontaneous eye opening, and between the interruption of sevoflurane and handgrip to verbal command.

Patients in the group of vaporizer II had significant higher values when compared to vaporizer I.

Therefore, patients in the group of vaporizer II (Sevoral™) had a mean time of spontaneous eye opening 34.5% greater and 29.5% greater for hand squeeze to verbal command when compared to vaporizer I (Generic Sevoflurane).

A significant difference was not observed between both groups regarding induction and interruption of sevoflurane.

Table I – Demographic Characteristics of the Patients According to the Group of Vaporizer (mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vaporizer</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Age (years)</td>
<td>51.47 ± 15.57</td>
<td>46.87 ± 20.44</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>68.84 ± 16.64</td>
<td>65.66 ± 11.69</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.62 ± 0.08</td>
<td>1.64 ± 0.07</td>
</tr>
<tr>
<td>BMI (kg.m⁻²)</td>
<td>26.48 ± 5.71</td>
<td>24.31 ± 3.59</td>
</tr>
<tr>
<td>Gender (fem)</td>
<td>28 (87.5%)</td>
<td>22 (67.8%)</td>
</tr>
</tbody>
</table>

Results expressed as Mean ± Standard Deviation.
(1) Descriptive probability level of the Student t test; (2) descriptive probability level of the Chi-square test.

Table II – Surgeries Performed According to Each Vaporizer

<table>
<thead>
<tr>
<th>Surgery</th>
<th>Vaporizer</th>
<th>Vaporizer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>00</td>
<td>03</td>
</tr>
<tr>
<td>Colectomy</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>Plastic surgery of the abdomen</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>Thyroidectomy</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>Mammoplasty</td>
<td>03</td>
<td>06</td>
</tr>
<tr>
<td>Gastrectomy</td>
<td>01</td>
<td>02</td>
</tr>
<tr>
<td>Bilateral inguinal herniorrhaphy</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>Reconstruction of the intestinal transit</td>
<td>01 00</td>
<td></td>
</tr>
<tr>
<td>Correction of rectal prolapse</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>Cystoscopy + unblocking of the ureter</td>
<td>00 01</td>
<td></td>
</tr>
<tr>
<td>Oophoroplasty</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>
Table III – Delta of the Times Evaluated According to Vaporizer Groups

<table>
<thead>
<tr>
<th>Time between</th>
<th>n</th>
<th>Mean</th>
<th>SD (±)</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction and interruption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizer I</td>
<td>32</td>
<td>177.44</td>
<td>65.60</td>
<td>158.00</td>
<td>85</td>
<td>328</td>
<td>0.712</td>
</tr>
<tr>
<td>Vaporizer II</td>
<td>32</td>
<td>189.94</td>
<td>82.14</td>
<td>188.50</td>
<td>80</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Interruption and eye opening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizer I</td>
<td>32</td>
<td>10.34</td>
<td>6.05</td>
<td>9.00</td>
<td>2</td>
<td>28</td>
<td>0.011</td>
</tr>
<tr>
<td>Vaporizer II</td>
<td>32</td>
<td>13.91</td>
<td>6.39</td>
<td>12.00</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Interruption and hangrip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizer I</td>
<td>32</td>
<td>11.88</td>
<td>6.60</td>
<td>10.50</td>
<td>4</td>
<td>28</td>
<td>0.022</td>
</tr>
<tr>
<td>Vaporizer II</td>
<td>32</td>
<td>15.38</td>
<td>6.47</td>
<td>13.50</td>
<td>6</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Interruption and (A-K \geq 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizer I</td>
<td>32</td>
<td>12.84</td>
<td>7.61</td>
<td>11.00</td>
<td>4</td>
<td>33</td>
<td>0.059</td>
</tr>
<tr>
<td>Vaporizer II</td>
<td>32</td>
<td>15.69</td>
<td>6.81</td>
<td>13.50</td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

and between the interruption of sevoflurane and the moment patients achieved an Aldrete-Kroulik index equal or above 8.

Study of variables in the PACU

During the period the patient remained in the PACU, the following parameters were observed: SBP, DBP, HR, SpO\(_2\), and VAS.

Through Analysis of Variance for repeated measurements, a significant difference in the means at the moments of evaluation was not observed.

Therefore, both vaporizers had similar behavior in the PACU regarding the following parameters: SBP (\(p = 0.582\)), DBP (\(p = 0.719\)), HR (\(p = 0.358\)), and SpO\(_2\) (0.325).

Study of the VAS

The non-parametric Mann-Whitney test demonstrated that both groups of vaporizers did not show differences at the moments evaluated: 0 min (\(p = 0.120\)), 15 min (\(p = 0.058\)), 30 min (\(p = 0.054\)), 45 min (\(p = 0.100\)), 60 min (\(p = 0.582\)), 75 min (\(p = 0.458\)), 90 min (\(p = 0.712\)), 105 min (\(p = 0.428\)), and 120 min (\(p = 0.279\)).

Additional use of agents during the study

In Table IV, additional drugs administered to patients in both groups of vaporizers are described.

Therefore, both groups of vaporizers did not show significant difference regarding the additional administration of drugs.

DISCUSSION

The monitoring used, especially BIS, SEF, TOF, ECG, HR, SBP, DBP, \(P_{ET}CO_2\), and SpO\(_2\) allowed the institution of an effective regimen of ventilation and the administration of adequate doses of sevoflurane, fentanyl, and atracurium to each patient regardless of the patient age and surgical procedure.

During the procedures, both agents showed similar behavior. However, after the interruption of the administration, a statistically significant difference was observed in the data regarding awakening from anesthesia. Patients in the Generic Sevoflurane group showed earlier spontaneous eye opening (3.57 min) than those in the Sevorane\(^{TM}\) group (means of 10.34 and 13.91 min, respectively).

Similarly, a statistically significant difference in the time between the interruption of sevoflurane and hand squeeze on verbal command was observed. Patients in the Generic Sevoflurane group showed statistically lower means (3.5 min) than those in the Sevorane\(^{TM}\) group (means of 11.88 min and 15.38 min, respectively).

The differences in the times of “interruption of sevoflurane-spontaneous eye opening” and “interruption of sevoflurane-handgrip to verbal command” allow the conclusion that awakening was faster (3.5 min) in patients anesthetized with Generic Sevoflurane (Biochimico) than in those anesthetized with Sevorane\(^{TM}\) (Abbott).

Despite those times having presented statistically significant differences, the values observed are within those mentioned by other studies\(^{10-12}\).

However, although awakening was statistically faster with Generic Sevoflurane, the anesthesiologists responsible for the cases, and who were not aware of which agent was administered did not observe and did not record at any moment of the study any difference in the clinical behavior of patients.

Although the agents used in this study are conditioned in vials with different characteristics and with different water contents, the statistical analysis of the data collected allows us to state that both Generic Sevoflurane (vaporizer I) and Sevorane\(^{TM}\) (vaporizer II) had similar behavior in all moments and in all parameters recorded during the execution of anesthetic-surgical procedures.

Table IV – Absolute and Relative Frequencies of Additional Drug per Group of Vaporizer

<table>
<thead>
<tr>
<th>Vaporizer</th>
<th>I</th>
<th>II</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midazolam</td>
<td>7 (21.9%)</td>
<td>4 (12.5%)</td>
<td>0.320</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>12 (37.5%)</td>
<td>14 (43.8%)</td>
<td>0.611</td>
</tr>
<tr>
<td>Atracurium</td>
<td>7 (21.9%)</td>
<td>8 (25.0%)</td>
<td>0.768</td>
</tr>
</tbody>
</table>

Results expressed in number of patients and percentages \(^*\) Descriptive probability level of the Chi-square test.
Estudo Comparativo Duplamente Encoberto entre Sevoflurano Genérico e Sevorane®

Alfredo Augusto Vieira Portella, TSA 1, Solange Maria Laurencel, TSA 2, Deise Martins Rosa, TSA 2, Maria Isabel Moscote Rivera 3, Santiago Osorno Quintero 4

Justificativa e objetivos: O sevoflurano é acondicionado em três tipos de recipientes. As diferenças de propriedades físico-químicas desses produtos se devem aos diversos processos de fabricação, embora sejam essencialmente idênticos quanto às provas de comparação química. Existe a hipótese de que a molécula do sevoflurano possa apresentar instabilidade química devida à formação de ácidos de Lewis em consequência do material utilizado para a fabricação dos frascos e do teor de água. O objetivo deste trabalho foi analisar a eficácia clínica do sevoflurano quando acondicionado em frascos diferentes.

Método: Foram estudados 64 pacientes adultos distribuídos aleatoriamente em dois grupos. Foram utilizados dois vaporizadores Datex-Ohmeda, sendo um abastecido apenas com Sevoflurano Genérico e o outro com Sevorane®. O coordenador do estudo foi o responsável pelo abastecimento dos vaporizadores e não realizou nenhuma anestesia. Em ambos os grupos, utilizou-se a mesma técnica anestésica e a mesma monitoração (ECG, FC, SpO₂, PTCO₂, BIS, TOF, % INSPI, % EXP, PAS, PAD).

Resultados: Durante a anestesia não houve diferença entre os grupos. Houve diferença estatística entre a interrupção do sevoflurano e a abertura espontânea dos olhos (13,91 ± 6,39 min Grupo II, e 10,34 ± 6,05 min Grupo I) e a interrupção do sevoflurano e o aperto de mão ao comando verbal (15,38 ± 6,47 min Grupo II, e 11,88 ± 6,60 min Grupo I). Não houve diferença estatística entre a interrupção do sevoflurano e o momento em que os pacientes atingiram Índice de Aldrete-Kroulik igual ou superior a 8.

Conclusões: Durante a anestesia, não houve diferença entre os grupos. Embora o despertar tenha sido 3,5 minutos mais rápido no Grupo I (Sevoflurano Genérico), os anestesiologistas não observaram qualquer diferença no comportamento clínico dos pacientes quanto a esse aspecto.

Unitermos: ANESTÉSICOS, Volátil: sevoflurano.

INTRODUÇÃO

O sevoflurano Abbott é fabricado pela Central Glass no Japão e distribuído para todo o mundo, sendo comercializado nos Estados Unidos com o nome Ultane® e na América Latina com o nome Sevorane®.

O sevoflurano utilizado na América Latina, inclusive no Brasil, é comercializado por três indústrias farmacêuticas (Abbott, Cristália e BioChimico) e seu uso está autorizado por órgãos fiscalizadores e reguladores nacionais.

Depois do lançamento do sevoflurano Abbott, dois outros produtos foram licenciados e comercializados no Brasil: o primeiro, a partir de 2002, pelo Laboratório Cristália (Sevocris®); o segundo, a partir de 2007, pelo Instituto Biochimico como medicamento genérico. O Laboratório Baxter também comercializa o sevoflurano, porém esse produto não está disponível no Brasil.

O sevoflurano é acondicionado em três diferentes tipos de recipientes e utiliza como estabilizador a água (em diferentes concentrações) ou o propilenoglicol:

1. Abbott (Sevorane®, Ultane®): acondicionado em frascos plásticos constituídos de náftalato de polietileno (PEN), contendo alto teor de água (pelo menos 300 ppm).

1. Professor-Adjunto, Chefe do Serviço de Anestesiologia do Hospital Universitário Pedro Ernesto – UERJ
2. Anestesiologista do Hospital Universitário Pedro Ernesto – UERJ, Corresponsável do CET/SBA do Hospital Universitário Pedro Ernesto – UERJ
3. Médica, 3º ano de especialização em Anestesiologia do Programa de Especialidade Médica para Estrangeiros do Hospital Universitário Pedro Ernesto – UERJ
4. Médico, 2º ano de especialização em Anestesiologia do Programa de Especialidade Médica para Estrangeiros do Hospital Universitário Pedro Ernesto – UERJ

Recebido do Hospital Universitário Pedro Ernesto – UERJ.

Endereço para correspondência:
Dr. Alfredo Augusto V. Portella
Rua Aimante Tamandaré, 53/402
Flamengo
CEP: 22210-060 – Rio de Janeiro, RJ
E-mail: aportrella@openlink.com.br
3. Cristália (Sevocris®): acondicionado em frascos de vidro âmbar USP tipo III, contendo 0,026% de propilenoglicol.
4. Baxter (Svofast®, não disponível no Brasil): acondicionado em frascos de alumínio revestido por epoxifenol, contendo teor médio de água (130 ppm).

Quando as propriedades físico-químicas desses produtos são analisadas, diferenças discretas podem ser identificadas, principalmente no que se refere ao tipo e ao teor de impurezas, que se devem aos diferentes processos de fabricação utilizados. Entretanto, as provas de comparação química demonstram que os produtos são essencialmente idênticos.

Atualmente, existe uma intensa polêmica envolvendo a hipótese de que a molécula do sevoflurano pode apresentar instabilidade química devido à formação de ácidos de Lewis, os quais seriam consequência das características dos frascos utilizados para seu acondicionamento e do teor de água contido na sua composição. Com a finalidade de comprovar ou contestar a existência dessa instabilidade, vários trabalhos foram publicados 1-7.

Apesar de essa polêmica não estar ainda totalmente esclarecida, surge agora outro questionamento: pode o tipo de frasco utilizado para acondicionar o sevoflurano alterar suas propriedades farmacológicas e, em consequência, interferir no seu efeito clínico?

Para tentar encontrar resposta a essa pergunta foi idealizado um estudo clínico com o objetivo de analisar comparativamente a eficácia clínica do sevoflurano quando acondicionado em frascos diferentes e com diferentes teores de água, como ocorre com o Sevoflurano Genérico (BioChimico) e o Sevorane® (Abbott).

MÉTODOS

Após aprovação pelo Comitê de Ética em Pesquisa do Hospital Universitário Pedro Ernesto, da Universidade do Estado do Rio de Janeiro, foram estudados 64 pacientes adultos de ambos os sexos, de estudo físico ASA I ou II, candidatos a procedimentos cirúrgicos eletivos sob anestesia geral, aleatoriamente distribuídos em dois grupos de igual número.

Todos os pacientes assinaram o “Consentimento Informado” padronizado no Hospital Universitário Pedro Ernesto da Universidade do Estado do Rio de Janeiro, onde o estudo foi desenvolvido.

O estatístico considerou o número de casos suficiente para processar a análise dos dados apresentados.

Para o estudo, foram reservados e numerados dois vaporizadores Datex-Ohmeda, nunca antes abastecidos, calibrados apropriadamente. Um deles foi acondicionado em frascos de vidro âmbar USP tipo III, contendo 0,026% de propilenoglicol. O outro apenas foi acondicionado em frascos de alumínio revestido por epoxifenol, contendo teor médio de água (130 ppm).

Durante o estudo, os anestesistas que realizaram as anestesias não tinham conhecimento da origem do sevoflurano contido nos vaporizadores. O único responsável pelo abastecimento dos vaporizadores foi o coordenador da pesquisa, o qual não realizou nenhuma das anestesias. Somente após a conclusão dos casos foi revelado qual sevoflurano foi utilizado para abastecer cada vaporizador.

Os pacientes foram pré-medicados com 7,5 mg de midazolam por via oral, cerca de 60 min antes da indução anestésica. No centro cirúrgico, após canulação de uma veia periférica no membro superior, se necessário, a sedação foi complementada com doses subsequentes de 1 mg de midazolam por via venosa, a cada 2 min, até que o paciente permanecesse dormindo porém despertável a pequenos estímulos sonoros ou tácteis (Ramsay 3 – BIS 75 a 80).

Durante o estudo, foram monitorados continuamente os seguintes parâmetros: atividade elétrica cardíaca (ECG), frequência cardíaca (FC), saturação periférica de oxigênio (SpO2), fração expirada de gás carbônico (PETCO2), índice bispectral (BIS), frequência de borda espectral (SEF), intensidade do bloqueio neuromuscular (TOF) e as concentrações inspirada (% INSPI) e expirada (% EXP) de sevoflurano. Intermitentemente, foram registradas as pressões arteriais sistólicas (PAS) e diastólicas (PAD) por método não invasivo.

A anestesia foi induzida, por via venosa (IV), com 40 mg de lidocaína a 1%, 0,7 mg.kg-1 de propofol, 0,2 mg.kg-1 de atracúrio e 5 µg.kg-1 de fentanil. Em seguida, foram administrados 10 mg de dexametasona IV e o paciente foi ventilado durante 4 min, sob máscara, com oxigênio 100% em sistema com absorvedor de CO2. Se, 4 min após a injeção do fentanil, o BIS se mantivesse acima de 60, era administrado sob máscara 4% de sevoflurano até o BIS atingir 40 a 45, quando então era realizada a intubação traqueal sob laríngeoscopia direta. Foi instituído regime de ventilação mecanicamente controlada e o ventilador foi ajustado com o objetivo de manter a PETCO2 entre 30 e 35 mm Hg.

A manutenção da anestesia foi feita com concentrações variáveis de sevoflurano suficientes para manterem o BIS entre 40 e 45. Doses supplementares de 0,1 µg.kg-1 de fentanil eram administradas quando a SEF ultrapassava 15 Hz.

Doses subsequentes de 10 mg de atracúrio IV foram administradas para manter o TOF inferior a 20% e a última dose foi programada para ser administrada até cerca de 30 min antes do término do procedimento cirúrgico.

Aproximadamente 15 min antes do final da intervenção cirúrgica o volume corrente foi reduzido em 50% a fim de normalizar a PETCO2 e estimular a ventilação espontânea e neste momento foram administrados, por via venosa, 40 mg de parecoxib associados a 2 g de dipirona e água destilada q.s.p. 20 mL.

O sevoflurano foi interrompido ao término da sutura cirúrgica. Nesse momento, foram administrados 0,2 mg de flumazenil IV a fim de antagonizar qualquer efeito residual do midazolam que pudesse interferir na avaliação do despertar (abertura espontânea dos olhos).

Se ao final da anestesia o TOF estivesse abaixo de 75% eram administrados 2 mg de neostigmina associados a 1 mg de atropina IV. Se 3 min após não houvesse reversão completa do bloqueio neuromuscular, era administrada metade da dose de neostigmina e atropina. Essa conduta teve como finalidade reverter qualquer efeito residual do bloqueador neuromuscular, o que interferiria na avaliação do aperto de mão ao comando verbal.
Após aspiração da orofaringe, o paciente era extubado ao apresentar ventilação espontânea eficaz, a qual foi definida pela manutenção de valores normais de volume corrente (VC), frequência respiratória (FR), SpO₂ e P\textsubscript{ET}CO\textsubscript{2}, com o paciente respirando ar ambiente.

Os dados para análise estatística foram coletados nos seguintes momentos:

1. PAS, PAD, FC, SpO\textsubscript{2}, SEF e BIS – antes da indução; 3 min após o propofol; a cada minuto após o início da administração do sevoflurano até antes da intubação; 1 min após a intubação; a cada 15 min durante a anestesia; antes e após a descurarização.
2. TOF – 3 min após o propofol; antes da intubação; a cada 15 min durante a anestesia; antes e após a descurarização.
3. P\textsubscript{ET}CO\textsubscript{2} – 1 min após a intubação e a cada 15 min durante a anestesia até antes da descurarização.
4. % INSP e % EXP – a cada minuto após o início da sua administração até o momento da intubação; e a cada 15 min durante a anestesia até antes da descurarização.
5. Após interrupção do Sevoflurano – tempo para desesperar (abertura espontânea dos olhos); tempo para atender comando verbal (aperto de mão, cada 2 min após abertura espontânea dos olhos); tempo para atingir índice de Aldrete-Kroulik igual ou superior a 8.
6. A cada 15 min, durante as 2 primeiras horas na sala de recuperação pós-anestésica (SRPA) – PAS; PAD; FC; SpO\textsubscript{2}; intensidade de dor avaliada pela escala analógica visual (EVA); e incidência de náuseas ou vômitos pós-operatórios (NVPO). Nos casos de dor intensa ou de episódios frequentes de náuseas ou vômitos eram administrados, respectivamente, 40 mg de parecoxib ou 4 mg de ondansetrona IV.
7. Alterações do ritmo cardíaco – registradas no item “OBS”, devendo ser informado o tipo de arritmia, o momento do seu aparecimento e o tratamento instituído.

Análise estatística

Inicialmente, todas as variáveis foram analisadas descritivamente. Para as variáveis quantitativas esta análise foi feita pela observação dos valores mínimos e máximos e do cálculo de médias, desvios-padrão e mediana. Para as variáveis qualitativas, calcularam-se frequências absolutas e relativas.

Para a comparação de médias de dois grupos foi utilizado o teste \textit{t} de Student e, quando a suposição de normalidade dos dados foi rejeitada, utilizou-se o teste não paramétrico de Mann-Whitney 8. Para se testar a homogeneidade entre as proporções, foi utilizado o teste Qui-Quadradão 8. Para averiguar o comportamento dos grupos, considerando as condições estudadas, fez-se uso da técnica Análise de Variância com medidas repetidas 9. O nível de significância utilizado para os testes foi de 5%.

RESULTADOS

A idade dos pacientes variou entre 17 e 87 anos (média de 49,21, DP ± 18,13), dos quais 50 (78,1%) eram do sexo feminino.

Os grupos foram homogêneos e não apresentaram diferenças significativas em relação às características demográficas (Tabela I).

A Tabela II relaciona as cirurgias que foram realizadas nos 64 pacientes, por grupo de vaporizador.

Análise dos dados coletados durante a cirurgia

Durante a cirurgia foram observados os seguintes parâmetros: PAS, PAD, FC, SpO\textsubscript{2}, BIS, TOF, P\textsubscript{ET}CO\textsubscript{2}, % INSP, % EXP, SEF.

Para cada um desses parâmetros, foram selecionados os momentos de avaliação que melhor representavam sua evolução ao longo da cirurgia realizada.

Por meio da Análise de Variância com medidas repetidas, observamos que os vaporizadores não apresentaram diferenças significativas nas médias dos momentos avaliados.

Tabela I – Características Demográficas dos Pacientes, Segundo os Grupos de Vaporizadores Utilizados

<table>
<thead>
<tr>
<th>Variável</th>
<th>Vaporizador I</th>
<th>Vaporizador II</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade (anos)</td>
<td>51,47 ± 15,57</td>
<td>46,87 ± 20,44</td>
<td>0,321(1)</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>68,84 ± 16,64</td>
<td>65,66 ± 11,69</td>
<td>0,379(1)</td>
</tr>
<tr>
<td>Altura (m)</td>
<td>1,62 ± 0,08</td>
<td>1,64 ± 0,07</td>
<td>0,151(1)</td>
</tr>
<tr>
<td>IMC (kg.m2)</td>
<td>26,48 ± 5,71</td>
<td>24,31 ± 3,59</td>
<td>0,079(1)</td>
</tr>
<tr>
<td>Sexo (fem)</td>
<td>28 (87,5%)</td>
<td>22 (67,8%)</td>
<td>0,070(2)</td>
</tr>
</tbody>
</table>

Valores expressos em Média ± Desvio-Padrão.
(1) nível descritivo de probabilidade do teste \textit{t} de Student; (2) nível descritivo de probabilidade do teste Qui-Quadradão.

Tabela II – Frequências das Cirurgias Realizadas, Segundo o Vaporizador

<table>
<thead>
<tr>
<th>Cirurgia</th>
<th>Vaporizador I</th>
<th>Vaporizador II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colectomia</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Histerectomia</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>Nefrectomia</td>
<td>00</td>
<td>03</td>
</tr>
<tr>
<td>Colectomia</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>Abdominoplastia</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>Tireoidectomia</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>Mamoplastia</td>
<td>03</td>
<td>06</td>
</tr>
<tr>
<td>Gastroctomia</td>
<td>01</td>
<td>02</td>
</tr>
<tr>
<td>Herniorrafia inguinal bilateral</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>Reconstrução de trânsito intestinal</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>Correção de prolapse retal</td>
<td>01</td>
<td>00</td>
</tr>
<tr>
<td>Cistoscopia + desbloqueio ureteral</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>Oofteroplastia</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>
Portanto, os dois vaporizadores apresentaram comportamento semelhante durante a cirurgia em relação aos seguintes parâmetros: PAS (p = 0,813); PAD (p = 0,520); FC (p = 0,692); SpO$_2$ (p = 0,720); BIS (p = 0,270); TOF durante o procedimento (p = 0,118) e antes da neostigmina (p = 0,327); P_{ET}CO$_2$ durante o procedimento (p = 0,620) e antes da neostigmina (p = 0,330); % INSP (p = 0,240); % EXP (p = 0,188); SEF (p = 0,439).

Estudo da regressão da anestesia

Foram analisados os períodos de tempos entre o início e o término da administração do Sevoflurano; entre a interrupção do sevoflurano e a abertura espontânea dos olhos; entre a interrupção do sevoflurano e o aperto de mão ao comando verbal (cada 2 min após abertura espontânea dos olhos); e da interrupção do sevoflurano até atingir índice de Aldrete-Kroulik igual ou superior a 8. Na Tabela III, os vaporizadores foram comparados em relação a esses tempos.

Observamos, por essa tabela, que os vaporizadores apresentaram diferença significativa em relação aos deltas de tempo entre a interrupção do sevoflurano e a abertura espontânea dos olhos e entre a interrupção do sevoflurano e o aperto de mão ao comando verbal.

Os pacientes do grupo do vaporizador II apresentaram valores significativamente maiores destes deltas quando comparados aos do vaporizador I.

Portanto, os pacientes do vaporizador II (Sevorane®) apresentaram um tempo médio 34,5% maior no delta da abertura espontânea dos olhos e 29,5% maior no delta de mão ao comando verbal, quando comparados aos do vaporizador I (Sevoflurano Genérico).

Os grupos não apresentaram diferença significativa em relação aos tempos entre a indução e a interrupção do sevoflurano e entre a interrupção do sevoflurano e o momento em que atingiram índice de Aldrete-Kroulik igual ou superior a 8.

Estudo das variáveis na SRPA

No período de permanência na SRPA foram observados os seguintes parâmetros: PAS, PAD, FC, SpO$_2$ e EVA.

Por meio da Análise de Variância com medidas repetidas, observamos que os vaporizadores não apresentaram diferenças significativas nas médias dos momentos avaliados.

Portanto, os dois vaporizadores apresentaram comportamento semelhante na SRPA em relação aos seguintes parâmetros: PAS (p = 0,582), PAD (p = 0,719), FC (p = 0,358), SpO$_2$ (p = 0,325).

Estudo da EVA

Pelo teste não paramétrico de Mann-Whitney, observamos que os grupos de vaporizadores não diferem nos momentos avaliados: 0 min (p = 0,120), 15 min (p = 0,058), 30 min (p = 0,054), 45 min (p = 0,100), 60 min (p = 0,582), 75 min (p = 0,458), 90 min (p = 0,712), 105 min (p = 0,428) e 120 min (p = 0,279).

Uso adicional de agentes durante o estudo

Na Tabela IV, estão descritos os medicamentos adicionais administrados nos pacientes nos grupos de vaporizadores.

Os grupos de vaporizadores não apresentaram diferença significativa em relação à administração adicional de drogas.

Tabela IV – Frequências Absolutas e Relativas das Medicações Adicionais, Segundo Grupos de Vaporizadores

<table>
<thead>
<tr>
<th>Vaporizador</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Midazolam</td>
<td>7 (21,9%) 4 (12,5) 0,320</td>
</tr>
<tr>
<td>Fentanil</td>
<td>12 (37,5%) 14 (43,8) 0,611</td>
</tr>
<tr>
<td>Atracúrio</td>
<td>7 (21,9%) 8 (25,0%) 0,768</td>
</tr>
</tbody>
</table>

Valores expressos em número de pacientes e porcentagem

(*) Nível descritivo de probabilidade do teste Qui-Quadrado.

Tabela III – Valores dos Deltas de Tempo Avaliados, Segundo Grupos de Vaporizadores

<table>
<thead>
<tr>
<th>Tempo entre:</th>
<th>n</th>
<th>Média</th>
<th>dp(±)</th>
<th>Mediana</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indução e interrupção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizador I</td>
<td>32</td>
<td>177,44</td>
<td>65,60</td>
<td>158,00</td>
<td>85</td>
<td>328</td>
<td>0,712</td>
</tr>
<tr>
<td>Vaporizador II</td>
<td>32</td>
<td>189,94</td>
<td>82,14</td>
<td>188,50</td>
<td>80</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Interrupção e abertura dos olhos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizador I</td>
<td>32</td>
<td>10,34</td>
<td>6,05</td>
<td>9,00</td>
<td>2</td>
<td>28</td>
<td>0,011</td>
</tr>
<tr>
<td>Vaporizador II</td>
<td>32</td>
<td>13,91</td>
<td>6,39</td>
<td>12,00</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Interrupção e aperto de mão</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizador I</td>
<td>32</td>
<td>11,88</td>
<td>6,60</td>
<td>10,50</td>
<td>4</td>
<td>28</td>
<td>0,022</td>
</tr>
<tr>
<td>Vaporizador II</td>
<td>32</td>
<td>15,38</td>
<td>6,47</td>
<td>13,50</td>
<td>6</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Interrupção e A-K ≥ 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporizador I</td>
<td>32</td>
<td>12,84</td>
<td>7,61</td>
<td>11,00</td>
<td>4</td>
<td>33</td>
<td>0,059</td>
</tr>
<tr>
<td>Vaporizador II</td>
<td>32</td>
<td>15,69</td>
<td>6,81</td>
<td>13,50</td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSÃO

A monitoração empregada, principalmente BIS, SEF, TOF, ECG, FC, PAS, PAD, P$_{ET}$CO$_2$ e SpO$_2$, permitiu instituir um eficaz regime de ventilação e possibilitou que o sevoflurano, o fentanil e o atracúrio fossem administrados em doses adequadas para cada paciente, independentemente da idade e do procedimento cirúrgico a que foram submetidos.

Durante os procedimentos, os dois agentes tiveram comportamento semelhante. Porém, após a interrupção da administração, houve diferença estatisticamente significante na análise dos dados referentes à emergência da anestesia. Os pacientes que foram anestesiados com Sevoflurano Genérico apresentaram abertura espontânea dos olhos mais precoce (3,57 min) do que os que foram anestesiados com Sevorane® (médias 10,34 e 13,91 min, respectivamente).

Do mesmo modo houve diferença estatisticamente significativa no tempo transcorrido entre a interrupção do sevoflurano e o aperto de mão ao comando verbal. Os pacientes que receberam Sevoflurano Genérico apresentaram média estatisticamente menor (3,5 min) do que os que receberam Sevorane® (médias 11,88 min e 15,38 min respectivamente).

As diferenças nos tempos “interrupção do sevoflurano-abertura espontânea dos olhos” e “interrupção do sevoflurano-aperto de mão ao comando verbal” permitem concluir que o despertar foi mais rápido (3,5 min) nos pacientes anestesiados com Sevoflurano Genérico (Biochimico) do que nos anestesiados com o Sevorane® (Abbott).

Apesar de esses tempos terem apresentado diferenças estatisticamente significantes, os valores encontrados situam-se entre os citados em outros trabalhos 10-12.

Entretanto, muito embora o despertar tenha sido estatisticamente mais rápido com o Sevoflurano Genérico, os anestesiologistas que realizaram as anestesias e que não tinham conhecimento de qual agente estavam administrando, não observaram e não registraram, em nenhum momento do estudo, qualquer diferença no comportamento clínico dos pacientes sob uso dos dois vaporizadores.

Muito embora os agentes utilizados neste estudo sejam acondicionados em frascos de características diferentes e contenham teores de água também diferentes, a análise estatística dos dados coletados permite afirmar que tanto o Sevoflurano Genérico (vaporizador I) como o Sevorane® (vaporizador II) se comportaram de maneira idêntica em todos os momentos e em todos os parâmetros registrados durante o período de execução dos procedimentos anestésico-cirúrgicos.

REFERÊNCIAS / REFERENCES

Justificativa y objetivos: El Sevoflurano se coloca en tres tipos de recipientes. Las diferencias de propiedades físico-químicas de esos productos se deben a los diversos procesos de fabricación, aunque sean esencialmente idénticos en cuanto a las pruebas de comparación química. Existe la hipótesis de que la molécula del Sevoflurano pueda presentar una inestabilidad química debido a la formación de ácidos Lewis, como consecuencia del material utilizado para la fabricación de los pomos y del contenido de agua.

El objetivo de este trabajo fue analizar la eficacia clínica del Sevoflurano cuando fue acondicionado en pomos diferentes.

Método: Se estudiaron 64 pacientes adultos distribuidos aleatoriamente en dos grupos. Fueron utilizados dos vaporizadores Datex-Ohmeda, siendo uno de ellos abastecido apenas con Sevoflurano Genérico y el otro con Sevorane®. El coordinador del estudio fue el responsable por el abastecimiento de los vaporizadores y no realizó la anestesia. En los dos grupos, se usó la misma técnica anestésica y la misma monitorización (ECG, FC, SpO$_2$, P$_{ET}$CO$_2$, BIS, SEF, TOF, % INSP, % EXP, PAS, PAD).

Resultados: No hubo diferencia entre los grupos durante la anestesia. Pero sí que hubo una diferencia estadística entre la interrupción del Sevoflurano y la abertura espontánea de los ojos (13,91 ± 6,39 min Grupo II, y 10,34 ± 6,05 min Grupo I), y la interrupción del Sevoflurano y el apretón de la mano al comando verbal (15,38 ± 6,47 min Grupo II, y 11,88 ± 6,60 min Grupo I). No hubo diferencia estadística entre la interrupción del Sevoflurano y el momento en que los pacientes alcanzaron el Índice de Aldrete-Kroulik igual o superior a 8.

Conclusiones: Durante la anestesia, no se registró diferencia entre los grupos. Aunque el despertar haya sido 3,5 minutos más rápido en el Grupo I (Sevoflurano Genérico), los anestesiastas no se percataron de ninguna diferencia en el comportamiento clínico de los pacientes en cuanto a ese aspecto.