Ventilatory Strategies for Hypoxemia During Cardiac Surgery: Survey Validation for Anesthesiologists in Brazil

Celso Augusto Martins Parra 1, Maria José Carvalho Carmona, TSA 2, José Otávio Costa Auler Junior, TSA 3, Luiz Marcelo Sá Malbouisson, TSA 4

Summary: Parra CAM, Carmona MJC, Auler Junior JOC, Malbouisson LMS – Ventilatory Strategies for Hypoxemia during Cardiac Surgery: Survey Validation for Anesthesiologists in Brazil.

Background and objectives: Perioperative hypoxemia is common in cardiac surgeries, and atelectasis is the main cause. Besides, we can mention extracorporeal circulation (ECC), dissection of internal thoracic arteries, and previous clinical status of the patient among others as its causes. The present study elaborated an anonymous questionnaire to observe ventilatory strategies for hypoxemia in cardiac surgeries adopted by five thousand anesthesiologists all over the country.

Methods: Questionnaires were sent via e-mail for five thousand anesthesiologists in Brazil.

Results: Out of the questionnaires sent, 81 valid responses were received. Among the answers, 65 (80%) anesthesiologists use volume-control-led ventilation (VCV), while 16 (20%) prefer pressure-controlled ventilation (PCV). The tidal volume (Vt) used is lower than 10 mL.kg⁻¹ for 46 (61%) versus 20 (30%) who adopt a Vt greater than 10 mL.kg⁻¹. Forty-seven (58%) use PEEP and 15 (21%) use FiO₂ above 60%. In the case of intraoperative hypoxemia, 20.9% increase or introduce PEEP, 70.3% increase the FiO₂, 19.7% use alveolar recruitment maneuvers, 13.5% increase the tidal volume, and 20.9% check for the presence of failures in the anesthesia equipment. Responses were sent from 15 states.

Conclusions: The conducts described in the questionnaires are compatible with those of the international literature. Adjusting the questionnaires format and the way to approach anesthesiologists, new studies could be undertaken.

Keywords: ANESTHESIOLOGY: medical practice; COMPLICATIONS: atelectasis, hypoxemia; SURGERY, Cardiac: extracorporeal circulation.

INTRODUCTION

Perioperative hypoxemia is a complication with a high incidence in cardiac surgeries, resulting in increased time of invasive respiratory support and in the incidence of infections culminating in longer stay in the intensive care unit, and consequently in total hospital costs. Hedenstierna and Rothén indicate atelectasis as the main cause of intraoperative hypoxemia, and its causes and strategies will be discussed later. Some particular aspects of cardiac surgeries, such as the presence of extracorporeal circulation (ECC), dissection of internal thoracic arteries for myocardial revascularization, as well as the baseline condition of the patient undergoing this surgery require increased attention to the management of perioperative hypoxemia. Chart 1 shows the causes of hypoxemia seen in cardiac surgeries.

Since it is a relatively common intercurrence, several strategies for its treatment, preventive and therapeutic, have been described. Chart 2 shows the main conducts.

The objective of the present study was to validate a questionnaire for anesthesiologists specialized in cardiac surgeries on the conducts for intraoperative hypoxemia and its applicability for future researches.

METHODS

A questionnaire was elaborated (Annex I) and sent by e-mail to 5,000 anesthesiologists in Brazil with an active e-mail at the Brazilian Society of Anesthesiology (SBA, from the Portuguese). Along with the questionnaire a brief explanation about the study, as well as a solicitation for their participation, were sent. Besides, the anonymity of the answers of the participants was assured. They were inquired about their preferred ventilation modality, ventilatory parameters, mixture of gases used, the resources offered by the anesthesia equipment, and their conduct in face of intraoperative hypoxemia. Anesthesiologists who do not work with anesthesia for cardiac surgeries were requested...
Annex I – Questionnaire on the use of mechanical ventilation during cardiac surgery in Brazil

How do you adjust the following parameters of the respirator during cardiac surgery?

1. Ventilation Modality Used

 Pressure-controlled () Volume-controlled () SIMV ()

2. Tidal Volume: ______________ (in mL/kg)

3. If you use pressure-controlled ventilation, which is the maximal pressure limit: ___________ (cmH₂O)

4. Respiratory rate: ______________ (bpm)

5. Do you commonly use positive end-expiratory pressure (PEEP)?

 YES () NO ()

6. If yes, which level of PEEP do you use? ______________ (cmH₂O)

7. What is the ration Inspiratory time/Expiratory time used? _____/_____
lower than 10 mL·kg⁻¹ while 29 (39%) use tidal volumes higher than 10 mL·kg⁻¹. Positive end-expiratory pressure (PEEP) was adopted by 47 (58%) anesthesiologists while 15 (21%) used an inspired fraction of oxygen (FiO₂) above 60%.

Since it was an open question the conduct in face of hypoxemia generated several answers and as a rule more than one per anesthesiologist. Chart 3 shows all responses; the most frequent were: increased or introduction of (PEEP) (20.9%), increased FiO₂ (70.3%), increased in tidal volume (13.5%), alveolar recruitment maneuvers (19.7%), and checking for leak or failure of the anesthesia equipment (20.9%).

The geographic distribution included 15 states of all Brazilian regions with predominance of the state of São Paulo (32%), and half of those were from the capital of the state. Chart 4 shows the number of answers per state.

DISCUSSION

The main difficulty of the study was to estimate a satisfactory number of answers to determine the applicability of the questionnaire. Even in organized societies, such as the American (American Society of Anesthesiologists – ASA), or the British (The Royal College of Anaesthetists) it is not possible to obtain an exact number of physicians who exert the activity of anesthesiologist; there is a specific international society for the field (International Society of Cardiovascular Anaesthesia) even though many specialized anesthesiologists are not associated with it. Based on a Canadian master's degree thesis with a questionnaire on monitoring in cardiac anesthesia it was possible to obtain an approximate number of anesthesiologists specialized in cardiovascular surgery (n = 278) since all cardiac surgery services and their respective anesthesiologists were listed. The method used was the safest: according to the data of the local health agency, all services of cardiac surgery were listed, their professionals were contacted and listed, and a personalized questionnaire with an answer-letter was sent to the hospital for each anesthesiologist specialized in cardiac surgery, which was sent again after two weeks, and non-respondents were contacted by telephone. This method generated 76.8% of responses. At the same time, a census undertaken by the Canadian government observed that in the same region 1,651 physicians were anesthesiologists. Approximately 17% of the anesthesiologists from Eastern Canada were specialized in cardiovascular surgery (n = 278) since all cardiac surgery services and their respective anesthesiologists were listed. The method used was the safest: according to the data of the local health agency, all services of cardiac surgery were listed, their professionals were contacted and listed, and a personalized questionnaire with an answer-letter was sent to the hospital for each anesthesiologist specialized in cardiac surgery, which was sent again after two weeks, and non-respondents were contacted by telephone. This method generated 76.8% of responses. At the same time, a census undertaken by the Canadian government observed that in the same region 1,651 physicians were anesthesiologists. Approximately 17% of the anesthesiologists from Eastern Canada were specialized in cardiovascular surgery. Those studies were undertaken 10 years ago, a time with a greater number of cardiac surgeries, which is reduced today due to the advancement of less invasive techniques, such as angioplasty. It is believed that nowadays this proportion of specialists is smaller.

In Brazil, it is also difficult to estimate officially the proportion of anesthesiologists since there are non-registered anesthesiologists and/or non-active in the SBA. If we use the number of anesthesiologists furnished by the society for mailing of the questionnaire as a number very close to reality, and extrapolate from the Canadian data the proportion of specialists in cardiovascular surgery, we have approximately 850 anesthesiologists in this specialty in Brazil. Therefore, we estimate that only 9.5% of the specialists in cardiovascular anesthesia answered the questionnaire. The frequency of respondents was for sure a reflection of the approach method (e-mail) and to opened questions which although they had frequent answers compatible with the data in the literature they also
generated answers like “depends on the patient” or “I usually do not have hypoxemia in the operating room”.

As for the results, a classical study compared two strategies of ventilation in 861 patients with acute lung damage \(^6\); in one group traditional tidal volume (12 mL.kg\(^{-1}\)) with maximal pressure of 50 cmH\(_2\)O was used, while the other group used low tidal volume (6 mL.kg\(^{-1}\)) with a maximal pressure peak of 30 cmH\(_2\)O. The study was interrupted due to the large difference in mortality between both groups (39.8 vs. 31.0\%). Schultz \(^8\) reviewed retrospective and observational studies of protective strategies in patients with ARDS that suggest a causal relationship between high tidal volume and lung damage, but they did not observe clear benefits from using low tidal volumes. Despite the lack of evidence we observed in the present study that 61\% of the anesthesiologists try to maintain the tidal volume lower than 10 mL.kg\(^{-1}\) to minimize pulmonary damage.

The main models of study on PEEP also involve acute lung damage whose extreme is represented by the acute respiratory distress syndrome (ARDS), in which excess of pulmonary inflammatory fluid, both interstitial and alveolar, is the mechanism of formation of atelectasis. Positive end-expiratory pressure has benefits in the strategy of pulmonary protection by stabilizing the end-expiratory volume and preventing alveolar collapse. Donahoe enumerated those strategies \(^10\) and indicated that PEEP was responsible for minimizing atelectrauma and biotrauma. The first one corresponds to the mechanical damage imposed to the alveolus that is in the limit of collapse and, at each respiratory cycle it is completely inflated and deflated, and the last is the inflammatory reaction triggered by the mechanical trauma caused by the first. Among the responses, we observed that 58\% use PEEP although this feature was available in 87\% of the anesthesia equipment. Despite the evidence in the literature and availability of this feature, it was available in 87\% of the anesthesia equipment. Despite the evidence we observed in the present study that 61\% of the anesthesiologists try to maintain the tidal volume lower than 10 mL.kg\(^{-1}\) to minimize pulmonary damage.

Excessive oxygen can cause damage of the alveolar tissue by forming superoxide radicals \(^11\). In a study involving patients with acute pulmonary damage \(^12\), it was observed that high oxygen concentrations could promote reabsorption atelectasis when compared to patients who received lower concentration of oxygen. Despite this, 21\% of the individuals use high oxygen concentrations (above 60\%).

The increase in PEEP is widely disseminated in reversing atelectasis, with 20.98\% of the answers. The increase in oxygen delivery although controversial is used by 70.6\% of the anesthesiologists. Tidal volume is increased by 13.5\% of the respondents.

Alveolar recruitment maneuver (ARM), also described in some studies as a vital capacity maneuver, consists on the temporary increase in the pressure of the airways, opening atelectatic alveoli with PEEP above the critical alveolar closing pressure. In a review undertaken in 2004, Oczenski et al.\(^13\) observed evidence of benefits of applying alveolar recruitment maneuvers in patients undergoing ECC and in patients who needs high oxygen concentrations. In the present study, 19\% of those interviewed perform alveolar recruitment maneuvers when faced with hypoxemia in cardiac surgeries.

Leak in the anesthesia equipment can cause both hypoxemia and intraoperative consciousness \(^14\). Although it is not a cause of hypoxemia widely investigated the sociocultural context inserts a bias on the clinical reasoning generating worries of checking the equipment in 19.7\% of those interviewed.

In a British questionnaire on conducts when facing hypoxemia in pediatric anesthesia \(^15\), the authors observed that up to 16\% of the anesthesiologists use inspired fraction of O\(_2\) higher than 40\%, which is close to the number of Brazilian anesthesiologists in which 21\% use an inspired fraction of oxygen greater than 60\%. The format of the questionnaire applied after the study in question is similar.

In the section of comments, some experiences were enriching and certainly will provide data to improve the approach to the subject. A frequent complaint (seven respondents) was regarding the degree of complexity of the anesthesia equipment that does not allow them to adopt the conducts mentioned in the study, except for the increase in FiO\(_2\). As an example, here is one of those comments: “In my town, the use of microprocessed devices are not widespread…” Those comments suggest a contrast between large centers and departments located in smaller towns.

CONCLUSION

The questionnaire on conducts taken when facing hypoxemia in cardiac anesthesia is compatible with the data of the international literature, and it is valid for further studies. Some adjustments, such as transforming open questions into categorical questions and a more personalized approach to the professionals therefore increasing the frequency of responses would be beneficial.
Estratégias Ventilatórias Frente à Hipoxemia em Cirurgia Cardíaca: Validação de Questionário para Anestesiologistas no Brasil

Celso Augusto Martins Parra 1, Maria José Carvalho Carmona, TSA 2, José Otávio Costa Auler Junior, TSA 3, Luiz Marcelo Sá Malbouisson, TSA 4

Justificativa e objetivos: A hipoxemia perioperatória ocorre frequentemente em cirurgia cardíaca e a atelectasia é sua principal causa. Além disso, podemos citar como causas circulação extracorpórea (CEC), dissecção de artérias torácicas internas, status clínico prévio do paciente, entre outras. O presente estudo elaborou um questionário anônimo para observar as estratégias ventilatórias frente à hipoxemia em cirurgia cardíaca adotadas por cinco mil anestesiologistas distribuídos no país.

Método: Foram enviados questionários por e-mail a cinco mil anestesiologistas do Brasil.

Resultados: Dos questionários enviados, foram recebidas 81 respostas válidas. Dentre as respostas, 65 (80%) anestesiologistas fazem uso da ventilação controlada a volume (VCV) frente a 16 (20%) que preferem ventilação controlada à pressão (PCV). O volume (Vt) corrente utilizado é inferior a 10 mL.kg 1 para 46 (61%) contra 29 (39%) que adotam um Vt maior que 10 mL.kg 1. Quarenta e sete (58%) usam PEEP e 17 (21%) utilizam FiO 2 acima de 60%. No caso de hipoxemia intraoperatória, 20,9% aumentam ou introduzem PEEP, 70,3% aumentam a FiO 2, 19,7% realizam manobra de recrutamento alveolar, 13,5% aumentam o volume-corrente e 20,9% realizam checagem de falhas no aparelho de anestesia. As respostas foram enviadas de 15 estados.

Conclusões: As condutas descritas nos questionários respondidos são compatíveis com a literatura internacional. Com ajuste no formato do questionário e na abordagem aos anestesiologistas, novos estudos poderão ser realizados.

Unitermos: ANESTESIOLOGIA: Condutas na Prática Médica; COMPLICAÇÕES: atelectasia, hipoxemia; CIRURGIA, Cardíaca: circulação extracorpórea.

INTRODUÇÃO

A hipoxemia perioperatória é uma complicação com alta incidência em cirurgia cardíaca 1, que resulta em aumento no tempo de suporte ventilatório invasivo 2 e incidência de infecções 3, culminando em maior tempo de internação em unidade de terapia intensiva e, consequentemente, em custo hospitalar total. Hedenstierna e Rothen 4 apontam a atelectasia como a principal causa de hipoxemia intraoperatória e suas causas e estratégias de prevenção serão discutidas mais adiante. Alguns aspectos particulares da cirurgia cardíaca, como presença de circulação extracorpórea (CEC), dissecção de artérias torácicas internas para revascularização do miocárdio, bem como a condição clínica de base do paciente submetido a tal cirurgia fazem com que se empregue atenção redobrada quanto ao manejo da hipoxemia perioperatória 5. O Quadro 1 enumera as causas de hipoxemia encontradas em cirurgia cardíaca.

Por ser uma intercorrência relativamente frequente, várias estratégias são descritas para seu tratamento, preventivas e terapêuticas. As principais condutas são enumeradas no Quadro 2.

O objetivo deste estudo foi validar um questionário realizado a anestesiologistas especialistas em cirurgia cardíaca sobre condutas frente à hipoxemia intraoperatória e sua aplicabilidade para futuras pesquisas.

MÉTODO

Foi elaborado um questionário (Anexo 1) e enviado por via eletrônica a 5.000 anestesiologistas do Brasil com e-mail ativo
Anexo 1 – Questionário sobre a utilização da ventilação mecânica durante a cirurgia cardíaca no Brasil

Como você ajusta os seguintes parâmetros do respirador mecânico durante a cirurgia cardíaca?

1 – Modalidade Ventilatória Utilizada:

 Pressão Controlada () Volume Controlado () SIMV ()

2 – Volume-corrente: ___________________ (em mL.Kg)

3 – Se ventila em pressão, qual o limite máximo de pressão (cmH₂O)

4 – Frequência Respiratória (IPM)

5 – Usa Pressão Positiva ao Final da Expiração (PEEP) habitualmente?

 SIM () NÃO ()

6 – Se sim que valor de PEEP é utilizado? ______________ (cmH₂O)

7 – Qual é a relação Tempo Inspiratório / Tempo Expiratório utilizada? _____/_____
RESULTADOS

Foram recebidas ao longo de duas semanas 82 respostas ao questionário, sendo que destas 81 foram consideradas, uma delas excluída do estudo por resposta incompleta das questões.

Quanto à modalidade ventilatória de escolha, 65 (80%) dos anestesiologistas preferem o modo de ventilação controlado a volume (VCV); os demais 20% (16 entrevistados) dão preferência à ventilação controlada à pressão (PCV). Nenhum deles anotou o modo de ventilação intermitente mandatória sincronizada (SIMV). Dividindo as respostas quanto aos parâmetros de volume-corrente em dois grupos, temos que 46 entrevistados (61%) adotam volume-corrente inferior a 10 mL.kg\(^{-1}\) contra 29 (39%) que optam por valores acima dos 10 mL.kg\(^{-1}\). A pressão positiva no final da expiração (Positive End Expiratory Pressure – PEEP) é adotada por 47 (58%) anestesiologistas, e 17 (21%) utilizam uma fração inspirada de oxigênio (FiO\(_2\)) acima de 60%.

Como era uma questão aberta, a conduta frente à hipoxemia gerou diversas respostas e, em geral, mais de uma por anestesiologista. Todas as respostas são citadas no Quadro 3 e as mais frequentes foram as seguintes: aumento ou introdução de PEEP (20,9%), aumento da FiO\(_2\) (70,3%), aumento do volume-corrente (13,5%), recrutamento alveolar (19,7%) e checagem por vazamento ou falha no aparelho de anestesia (20,9%).

A distribuição geográfica das respostas compreende 15 unidades da federação, abrangendo todas as regiões, com predomínio das respostas provindas do estado de São Paulo (32%), sendo metade proveniente da capital desse estado. O Quadro 4 mostra a quantidade de respostas por unidade da federação.

DISCUSSÃO

A principal dificuldade do estudo é estimar um número satisfatório de respostas para constatar a aplicabilidade do questionário. Mesmo em sociedades organizadas, como a sociedade americana (American Society of Anesthesiologists – ASA) ou a britânica (The Royal College of Anaesthetists), não é possível obter-se um número exato de médicos que exercem a atividade de especialista; há uma sociedade internacional específica para a área (International Society of Cardiovascular Anaesthesia), porém muitos anestesiologistas especializados não fazem parte dela. Com base em uma tese de mestrado canadense, foi possível obter um número exato de médicos que exercem a atividade de especialista; há uma sociedade internacional específica para a área (International Society of Cardiovascular Anaesthesia), porém muitos anestesiologistas especializados não fazem parte dela. Considerando a questão de monitorização em anestesia cardíaca, foi possível obter um número aproximado de anestesiologistas especializados em cirurgia cardiovascular para a região estudada (n = 278), uma vez que foram enumerados todos os serviços de cirurgia cardíaca e seus respectivos anestesiologistas; o método utilizado foi o mais seguro: segundo dados da agência de saúde local, todos os serviços de cirurgia cardíaca foram contatados e listados, e um questionário personalizado com cartas-respostas foi enviado ao hospital para cada anestesiologista especializado em cirurgia cardíaca, reenviando após duas semanas, e os não respondentes nas duas ocasiões foram contatados por telefone. Esse método gerou 76,8% de
respostas; na mesma época, um censo realizado por um órgão governamental canadense observou que, na mesma região, 1.651 especialistas praticavam anestesiologia. Grosso modo, aproximadamente 17% dos anestesiologistas da região leste do Canadá praticam anestesia em cirurgia cardiovascular. Esses estudos datam de 10 anos atrás, quando havia um número maior de cirurgias cardíacas, hoje reduzido, devido ao avanço de técnicas menos invasivas como a angioplastia. Acredita-se que, nos dias de hoje, essa proporção de especialistas é menor.

No Brasil, também há dificuldade na estimativa oficial de médicos praticantes na especialidade, uma vez que há anestesiologistas que não cadastrados e/ou não ativos na SBA. Se utilizarmos o número de anestesiologistas fornecidos pela sociedade para o envio do questionário como um número muito próximo da realidade, e extrapolarmos dos dados canadenses a proporção de especialistas em cirurgia cardiovascular, temos que aproximadamente 850 anestesiologistas praticam a especialidade no Brasil. Portanto, estimamos que apenas 9,5% dos especialistas em anestesia cardiovascular responderam ao questionário. Com certeza, a frequência das respostas foi inerente ao método de abordagem (e-mail) e às questões abertas, que, apesar de terem respostas frequentes e compatíveis com os dados de literatura, também geraram respostas como “depende do paciente” ou “não costumo ter hipoxemia em sala”.

Quanto aos resultados, um estudo clássico comparou duas estratégias de ventilação em 861 pacientes com lesão pulmonar aguda; em um grupo, utilizaram o volume-corrente tradicional (12 mL.kg\(^{-1}\)) com pressão máxima de 50 cmH\(_2\)O, enquanto no outro utilizou baixo volume-corrente (6 mL.kg\(^{-1}\)), com um pico máximo de pressão de 30 cmH\(_2\)O. O estudo foi interrompido devido à grande diferença na mortalidade entre os grupos (39,8% vs. 31,0). Schultz revisou estudos retrospectivos e observacionais de estratégias protetoras em pacientes sem SDRA, que sugerem relação causal entre alto volume-corrente e lesão pulmonar em pacientes, porém não evidenciando benefícios claros no uso de baixo volume-corrente. Apesar da falta de evidências, observamos que, no estudo realizado, 61% dos anestesiologistas procuram manter o volume-corrente em valores inferiores a 10 mL.kg\(^{-1}\), de modo a minimizar a lesão pulmonar.

Os principais modelos de estudo da PEEP também envolvem lesão pulmonar aguda, cujo extremo é o síndrome do desconforto respiratório agudo (SDRA), em que o mecanismo de formação da atelectasia é o excesso de fluido inflamatório pulmonar, tanto intersticial quanto alveolar. A PEEP é benéfica na estratégia de proteção pulmonar, por estabilizar o volume expiratório final e prevenir colapamento alveolar. Donahoe enumerou essas estratégias, e responsabiliza a PEEP por minimizar o atelectrauma e o biotrauma, o primeiro correspondendo à lesão mecânica imposta ao alvéolo que se encontra no limite do colapamento e, a cada ciclo inspiratório, é insufilado e desinsuflado completamente e o último à reação inflamatória desencadeada pelo trauma mecânico da primeira. Dentre as respostas, observamos que 58% atentam para o uso da PEEP, ainda que 87% dos aparelhos de anestesia disponibilizassem seu uso. Apesar da evidência na literatura e na disponibilidade do parâmetro, acredita-se que essa diferença decorra de dificuldade técnica da equipe cirúrgica ao operar com PEEP.

A oferta excessiva de oxigênio pode ser lesiva ao tecido alveolar, formando radicais superóxidos. Em estudo envolvendo pacientes com lesão pulmonar aguda, observou-se que a alta concentração de oxigênio pode promover atelectasia de reabsorção, em comparação com pacientes que receberam oxigênio em menor concentração. Apesar de tudo isso, 21% dos indivíduos oferecem a seus doentes oxigênio em alta concentração (acima de 60%).

O aumento da PEEP é amplamente disseminado na reversão da atelectasia, com 20,98% das respostas. O aumento do aporte de oxigênio, embora controverso, é realizado por 70,6% dos anestesiologistas. O volume-corrente é aumentado por 13,5% dos respondentes à pesquisa.

A manobra de recrutamento alveolar (RA), também descrita em alguns estudos como manobra da capacidade vital, consiste no aumento temporário da pressão das vias aéreas, propiciando abertura de alvéolos atelectasiados e mantendo-os abertos por meio da PEEP acima da pressão crítica de fechamento alveolar. Em uma revisão de 2004, Oczenski e col. encontrou evidências de que há benefício na aplicação da manobra em pacientes submetidos à CEC e em pacientes com necessidade de altas concentrações de oxigênio. No entanto, 19% dos entrevistados executam recrutamento alveolar frente à hipoxemia em cirurgia cardíaca.

Vazamentos no aparelho de anestesia podem ser causa tanto de hipoxemia quanto de consciência inotrópica. Embora não seja uma causa amplamente estudada de hipoxemia, o contexto sociocultural insere um viés no raciocínio clínico, gerando a preocupação de rechecagem dos aparelhos em 19,7% dos entrevistados.

Em um questionário britânico sobre condutas frente à hipoxemia em anestesia pediátrica, observou-se que até 16% dos anestesiologistas fazem uso de fração inspirada de O\(_2\) superior a 40%, número próximo ao dos anestesiologistas no Brasil, onde 21% utilizam oxigênio com fração inspirada maior que 60%. O formato do questionário, aplicado após o estudo em questão, é bem semelhante.

Na seção de comentários, algumas experiências foram enriquecedoras e certamente fornecerão dados para melhor abordagem ao assunto. Uma queixa frequente (sete entrevistados) foi a respeito do grau de complexidade do aparelho de anestesia, que os impede de adotar as condutas comentadas no estudo, à exceção do aumento da FiO\(_2\). Como exemplo, segue um trecho: “Não estão difundidos (sic) ainda em minha cidade o uso de aparelhos microprocessados...”. Esses comentários sugerem contraste entre os grandes centros e os serviços mais afastados.

CONCLUSÃO

O questionário sobre condutas frente à hipoxemia em anestesia cardíaca é compatível com os dados de literatura internacional, sendo válido para próximos estudos. Alguns ajustes serão benéficos, como transformação das questões abertas em categóricas e um modo de abordagem ao profissional mais personalizado, aumentando, assim, a frequência de respostas.
REFERÊNCIAS / REFERENCES

05. Magnusson L, Zemgulis V, Wicky S et al. – Atelectasis is a major cause of hypoxemia and shunt after cardiopulmonary bypass: an experimental study. Anesthesiology, 1997;87:1153-1163.

Justificativa y objetivos: La hipoxemia perioperatoria ocurre frecuentemente en la cirugía cardíaca, y la atelectasia es su principal causa. Además, podemos citar como causas la circulación extracorpórea (CEC), disección de arterias torácicas internas, status clínico previo del paciente, entre otras. El presente estudio elaboró un cuestionario anónimo para observar las estrategias ventilatorias frente a la hipoxemia en cirugía cardiaca adoptadas por cinco mil anestesiólogos en todo el país.

Método: Fueron enviados cuestionarios por e-mail a cinco mil anestesiólogos de Brasil.

Resultados: De los cuestionarios enviados, se recibieron 81 respuestas válidas. Entre las respuestas, 65 (80%) anestesiólogos usan ventilación controlada a volumen (VCV) frente a 16 (20%) que prefieren la ventilación controlada a presión (PCV). El volumen (Vt) corriente utilizado es inferior a 10 mL.kg-1 para 46 (61%) contra 29 (39%) que adoptan un Vt mayor que 10 mL.kg-1. Cuarenta y siete (58%) usan PEEP y 17 (21%) utilizan FiO2 por encima del 60%. En el caso de hipoxemia intraoperatoria, 20,9% aumentan o introducen PEEP, un 70,3% aumentan la FiO2, un 19,7% realizan maniobra de reclutamiento alveolar, un 13,5% aumentan el volumen corriente y un 20,9% realizan el chequeo de fallas en el aparato de anestesia. Las respuestas fueron enviadas desde 15 estados.

Conclusiones: Las conductas descritas en los cuestionarios respondidos están a tono con la literatura internacional. Nuevos estudios se podrán hacer ajustando el formato del cuestionario y el abordaje a los anestesiólogos.